爸爸的朋友在线观看,美国毛片免费看,337p日本在线,亚洲女人日B

倍數(shù)和因數(shù)教學反思

時間:2022-04-22 09:58:56 教學反思 我要投稿

倍數(shù)和因數(shù)教學反思

  身為一名人民教師,教學是重要的工作之一,寫教學反思可以快速提升我們的教學能力,那么教學反思應該怎么寫才合適呢?以下是小編收集整理的倍數(shù)和因數(shù)教學反思,歡迎大家分享。

倍數(shù)和因數(shù)教學反思

倍數(shù)和因數(shù)教學反思1

  一、單元主題圖體驗數(shù)學化過程。單元主題圖是教材中的一個重要內(nèi)容,它是選擇某一個主題構建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學中,我是從培養(yǎng)學生的問題意識出發(fā)來組織教學的,首先讓學生獨立觀察主題圖,通過獨立思考提出問題;然后讓孩子們通過小組合作,共享學習的成果;最后通過解決問題,體驗獲取知識的過程。教學中學生不僅很快找到了整數(shù)、小數(shù)、負數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個凳子、一張桌子用“1”表示,更多的是學生提出了很多的數(shù)學問題,如我有50元可以買多少千克蘋果?學生真正是在自主學習的過程中提出問題、解決問題,體驗“數(shù)學化”的過程。

  二、數(shù)形結合實現(xiàn)有意義建構。教材中對因數(shù)概念的認識,設計了“用小正方形拼長方形”的操作活動,引導學生在方格紙上畫一畫,寫出乘法算式,再與同學進行交流。在思考“哪幾種拼法”時,借助“拼小正方形”的活動,使數(shù)與形有機地結合,防止學生進行“機械地學習”;學生對因數(shù)和理解不僅是數(shù)字上的認識,而且能與操作活動與圖形描述聯(lián)系起來,促進了學生的.有意義建構,這是一個“先形后數(shù)”的過程,是一個知識抽象的過程。

  三、探索活動關注解決問題的策略。學生在探索活動中,運用做記號、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會觀察、分析、歸納、猜想、驗證等過程,孩子們學會了思考,初步形成了解決問題的一些基本策略。

  四、困惑:

  1、第一次真正開始教北師大教材,最大的感覺是教學的空間真的擴大了,課堂活躍了,但是同時給學生進行課后輔導的時間也增加了,每節(jié)課從學生的反饋看來,卻有相當一部分的學生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎性”題目,整個一個單元只有一個練習一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。

  2、不太明白為什么一定要使用“因數(shù)”這個概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。這一改好像我們還得教學生家長,就真的有學生家長投訴說“老師啊,你教錯了,那不是因數(shù),是約數(shù)……”,讓人哭笑

倍數(shù)和因數(shù)教學反思2

  去年教學《公倍數(shù)和公因數(shù)》這一單元時,依照學生預習、閱讀課本進行教學,老師沒有作過多的講解,從學生的練習反饋中,部分學生求兩個數(shù)的最大公因數(shù)和最小公倍數(shù)錯誤百出,反思教學后,覺得用課本上列舉的方法,真的很難一下子準確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的最小公倍數(shù),有學生寫80,25和50的最大公因數(shù)有學生寫5。……調(diào)查詢問學生找兩個數(shù)公倍數(shù)和最小公倍數(shù),或者兩個數(shù)的公因數(shù)和最大公因數(shù)的感受,他們都說“太麻煩了”。

  今年教學《公倍數(shù)和公因數(shù)》這一單元時,我在去年教學《公倍數(shù)和公因數(shù)》的基礎上作了一些改進:

  一、仍然是將預習前置。

  二、動手操作,想象延伸。

  讓學生動手操作,提高感知效果,幫助學生形成豐富的表象,是促進形象思維發(fā)展的有利途徑。例題教學中讓學生動手鋪,鋪后想,想后算,算后思。

  用長3厘米、寬2厘米的長方形紙片分別鋪邊長6厘米、8厘米的正方形,能鋪滿哪個正方形?拿出手中的圖形,動手拼一拼。

  學生分組操作,用除法算式把不同的擺法寫出來。

  提問:通過剛才的活動,你們發(fā)現(xiàn)了什么?

  以直觀的操作活動,在具體的問題情境中體會公倍數(shù)和公因數(shù)與生活的聯(lián)系,讓學生經(jīng)歷公倍數(shù)和公因數(shù)概念的形成過程,加深對抽象概念的理解。

  思考:根據(jù)剛才鋪正方形的過程,在頭腦里想一想,用3厘米、寬2厘米的長方形紙片正好鋪滿邊長多少厘米的正方形?在小組里交流。

  三、在教學中嚴格要求學生先用“列舉法”教學“求兩數(shù)公倍數(shù)與公因數(shù)”;在學生相對較熟練的時候嘗試讓學生直接說出公倍數(shù)與公因數(shù);在此基礎上適當介紹后面的閱讀知識,但不要求學生使用。

  四、在教學了用“列舉法”“求兩數(shù)公倍數(shù)與公因數(shù)”的知識之后,適當提高訓練難度,將求“最小公倍數(shù)”與“最大公因數(shù)”合并訓練。通過聯(lián)系“最大公因數(shù)”、“最小公倍數(shù)”的知識,引導學生發(fā)現(xiàn)求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)的擴倍法等其它的'方法。要求學生根據(jù)情況,用自己喜歡的方法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學生結合題目中兩個數(shù)的特點,自主選擇方法的空間,學生比較喜歡,掌握較好。通過練習引導學生感悟、概括出了一些特殊情況:(1)兩個數(shù)是倍數(shù)關系的,這兩個數(shù)的最小公倍數(shù)是其中較大的一個數(shù),最大公因數(shù)是其中較小的一個數(shù);(2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的情況(“互質(zhì)數(shù)”這個概念學生沒有學到):①兩個不同的素數(shù);②兩個連續(xù)的自然數(shù);③1和任何自然數(shù)。

  課后反思:

  一、預習后的課堂教學,還要教,直接放手要出問題。

  二、介紹一下短除法是有必要的。但不能直接按傳統(tǒng)的教學思路以短除法求最大公因數(shù)和最小公倍數(shù)簡單代替列舉法。

  三、應逐步鼓勵學生把求最大公因數(shù)和最小公倍數(shù)過程想在腦中,直接說出結果。引導感興趣的同學在課后探索其它的求最大公因數(shù)和最小公倍數(shù)的內(nèi)容,適當提高學生的思維水平。

倍數(shù)和因數(shù)教學反思3

  新教材在引入倍數(shù)和因數(shù)概念時與以往的老教材有所不同,比如在認識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎,引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學化定義,降低學生的認知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎。我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇,同時,也為提高課堂教學的有效性,我從以下三個方面談一點教學體會。

  一、設疑遷移,點燃學習的火花

  良好的開頭是成功的一半。我采用“拼拼擺擺”作為談話進入正題,不僅可以調(diào)動學生的學習興趣,一一對應、相互依存。對感知倍數(shù)和因數(shù)進行有效的滲透和拓展。

  教學找一個數(shù)的倍數(shù)時,我依據(jù)學情,設計讓學生獨立探究尋找3的倍數(shù)。我設計了嘗試練——引出沖突——討論探究這么一個學習環(huán)節(jié)。學生帶著“又對又好”的要求開始自主練習,學生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。在學生充分討論的基礎上,我組織學生圍繞“好”展開評價,有的學生認為:從小到大依次寫,因為有序,所以覺得好;有的學生認為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個倍數(shù)是多少,學生發(fā)現(xiàn)3的倍數(shù)寫不完時都面面相覷,左顧右盼。學生通過討論,認為用省略號表示比較恰當。用語文中的一個標點符號解決了數(shù)學問題,自己發(fā)現(xiàn)問題自己解決,學生從中體驗到解決問題的愉快感和掌握新知的成就感。

  二、操作實踐,舉例內(nèi)化,認識倍數(shù)和因數(shù)

  我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結合,變抽象為直觀。首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助多媒體出示乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,讓學生自主體驗數(shù)與形的結合,進而形成因數(shù)與倍數(shù)的意義.使學生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,充分學習、利用、挖掘教材,用學生已有的數(shù)學知識引出了新知識,減緩難度,效果較好。

  三、注重細節(jié),注重學生的習慣培養(yǎng)

  學生在找一個數(shù)的因數(shù)時最常犯的'錯誤就是漏找,即找不全。學生怎樣按一定順序找全因數(shù)這也正是本課教學的難點。所以在學生交流匯報時,我結合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。

  這樣的板書幫助學生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學生么隨著流程的進行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細節(jié)的教學,既避免了教師羅嗦的講解,又有效突破了教學難點,我相信像這樣潤物無聲的細節(jié),無論于學生、于課堂都是有利無弊的

  由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動地接受。教學之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認真鉆研了教材,仔細分析了教案,看哪些地方時間安排的可以少一些,所以我在總結倍數(shù)的特征,這一環(huán)節(jié)里縮短出示時間,直接以3個小問題出示,,實際效果我認為是比較理想的。課上還應該及時運用多媒體將學生找的因數(shù)呈現(xiàn)出來,引導學生歸納總結自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。應該及時跟上個性化的語言評價,激活學生的情感,將學生的思維不斷活躍起來。

倍數(shù)和因數(shù)教學反思4

  【教學內(nèi)容】

  人教版數(shù)學五年級下冊P12一14,練習二。

  【教學過程】

  一、操作空間,初步感知。

  1.同桌用12塊完全一樣的小正方形拼成一個長方形,有幾種拼法?要求:能想象的就想象,不能想象的才借助小正方形擺一擺。

  2.學生動手操作,并與同桌交流擺法。

  3.請用算式表達你的擺法。

  匯報:1×12=12,2×6=12,3×4=12。

  【評析】通過讓學生動手操作、想象、表達等環(huán)節(jié),既為新知探索提供材料,又孕育求一個數(shù)的因數(shù)的思考方法。

  二、探索空間,理解新知。

  1.理解因數(shù)和倍數(shù)。

  (1)觀察3×4=12,你能從數(shù)學的角度說說它們之間的關系嗎? 師根據(jù)學生的表達完成以下板書: 3是12的因數(shù) 12是3的倍數(shù) 4是12的因數(shù) 12是4的倍數(shù) 3和4是12的因數(shù) 12是3和4的倍數(shù)

  (2)用因數(shù)和倍數(shù)說說算式1×12=12,2×6=12的關系。

  (3)觀察因數(shù)和倍數(shù)的相互關系。揭示:研究因數(shù)和倍數(shù)時,所指的數(shù)是整數(shù)(一般不包括O)。

  2.求一個數(shù)的因數(shù)。

  (1)出示2,5,12,15,36。從這些數(shù)中找一找誰是誰的因數(shù)。 學生匯報。

  師:2和12是36的因數(shù),找1個、2個不難,難就難在把36所有的因數(shù)全部找出來,請同學們找出36的所有因數(shù)。

  出示要求:

  ①可獨立完成,也可同桌合作。

  ②可借助剛才找出12的所有因數(shù)的方法。

  ③寫出36的所有因數(shù)。

 、芟胍幌,怎樣找才能保證既不重復,又不遺漏。 教師巡視,展示學生幾種答案。

  生1:1,2,3,4,9,12,36。

  生2:1,36,2,18,3,12,4,9,6。

  生3:1,4,2,36,9,3,6,12,18。

  (2)比較喜歡哪一種答案?為什么?

  用什么方法找既不重復又不遺漏。(按順序一對一對找,一直找到兩個因數(shù)相差很小或相等為止)

  師:有序思考更能準確找出一個數(shù)的所有因數(shù)。 完成板書:描述式、集合式。

  (3)30的因數(shù)有哪些?

  【評析】學生圍繞教師出示的思考步驟,尋找36的所有因數(shù)。既留足了自主探索的空間,又在方法上有所引導,避免了學生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學的難點。

  3.求一個數(shù)的倍數(shù)。

  (1)3的倍數(shù)有:——,怎樣

  有序地找,有多少個?

  找一個數(shù)的倍數(shù),用1,2,3,4?分別乘這個數(shù)。 (2)練一練:6的倍數(shù)有: ,40以內(nèi)6的`倍數(shù)有:一o

  【評析】

  由于有了有序思考的基礎,求一個數(shù)的倍數(shù)水到渠成,本環(huán)節(jié)重在思考方法上的提升。

  4.發(fā)現(xiàn)規(guī)律。

  觀察上面幾個數(shù)的因數(shù)和倍數(shù)的例子,你對它們的最大數(shù)和最小數(shù)有什么發(fā)現(xiàn)? 根據(jù)學生匯報,歸納:一個數(shù)的最小因數(shù)是I,最大因數(shù)是它本身;一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。

  【評析】

  通過觀察板書上幾個數(shù)的因數(shù)和倍數(shù),放手讓學生發(fā)現(xiàn)規(guī)律,既突出了學生的主體地位,又培養(yǎng)了學生觀察、歸納的能力。 三、歸納空間,內(nèi)化新知。

  師生共同總結:

  (1)因數(shù)和倍數(shù)是相互的,不能單獨存在。

  (2)找一個數(shù)的因數(shù)和倍數(shù),應有序思考。

  四、拓展空間,應用新知。

  1、15的因數(shù)有:——,15的倍數(shù)有:——。

  2.判斷。

  (1)6是因數(shù),24是倍數(shù)。( )

  (2)3.6÷4=0.9,所以3.6是4的因數(shù)。 ( )

  (3)1是1,2,3,4?的因數(shù)。 ( )

  (4)一個數(shù)的最小倍數(shù)是21,這個數(shù)的因數(shù)有1,5,25。( )

  3、選用4,6,8,24,1,5中的一些數(shù)字,用今天學習的知識說一句話。

  4、舉座位號起立游戲。

  (1)5的倍數(shù)。

  (2)48的因數(shù)。

  (3)既是9的倍數(shù),又是36的因數(shù)。

  (4)怎樣說一句話讓還坐著的同學全部起立。

  【評析】

  本環(huán)節(jié)的前3題側(cè)重于鞏固新知,后2題側(cè)重于發(fā)展思維。通過“說一句話”和“起立游戲”,展現(xiàn)了學生的個性思維,體現(xiàn)了知識的應用價值。

  【反思】

  本課教學設計重在讓學生通過自主探索,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法,體驗有序思考的重要性。體現(xiàn)了以下兩個特點: 一、留足空間,讓探索有質(zhì)量。

  留足思維空間,才能充分調(diào)動多種感官參與學習,充分發(fā)揮知識經(jīng)驗和生活經(jīng)驗,使探索成為知識不斷提升、思維不斷發(fā)展、情感不斷豐富的過程。第一,把教材中的飛機圖改為拼長方形,讓同桌同學借助12塊完全一樣的正方形拼成一個長方形。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。第二:放手讓每個同學找出36的所有因數(shù),由于個人經(jīng)驗和思

  維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。第三:通過觀察12,36,30的因數(shù)和3,6的倍數(shù),你發(fā)現(xiàn)了什么?由于提供了豐富的觀察對象,保證了觀察的目的性。第四:讓學生“選用4,6,8,24,1,5中的一些數(shù)字,用今天學習的知識說一句話”。不拘形式的說話空間,不僅體現(xiàn)了差異性教學,更是體現(xiàn)了不同的人在數(shù)學上的不同發(fā)展。 二、適度引導,讓探索有方向。

  引導與探索并不矛盾,探索前的適度引導正是讓探索走得更遠。探索12塊完全一樣的正方形拼成一個長方形,有幾種拼法?教師提示能想象的就想象,不能想象的可借助小正方形擺一擺。這樣的引導,是尊重學生不同思維的有效引導。

  在找36的所有因數(shù)時,教師出示4條要求,既是引導學生思考的方向,又是提醒學生探索的任務。在讓學生觀察幾個數(shù)的因數(shù)和倍數(shù)時,引導學生觀察最大數(shù)和最小數(shù),有什么發(fā)現(xiàn)?這樣的引導,避免了學生的盲目觀察。可見,適度的引導,保證了自主探索思維的方向性和順暢性。

  整堂課,學生想象豐富、思維活躍、思考有序。整個認知過程是體驗不斷豐富、概念不斷形成、知識不斷建構的過程。

倍數(shù)和因數(shù)教學反思5

  《倍數(shù)和因數(shù)》是四下第九單元的內(nèi)容。教學時,我首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助乘法算式引出倍數(shù)和因數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作到直觀感知,讓學生自主體驗數(shù)與形的結合,進而形成倍數(shù)與因數(shù)的意義,使學生初步建立了“倍數(shù)與因數(shù)”的概念。根據(jù)算式直接說明誰是誰的倍數(shù),誰是誰的因數(shù),學生很容易接受,再通過學生自己舉例和交流,進一步加深對倍數(shù)和因數(shù)意義的理解。從學生的反應和課堂氣氛來看,教學效果還是不錯的。

  能不重復、不遺漏、有序地找出一個數(shù)的倍數(shù)和因數(shù),是本課的教學難點。教學時,我先讓學生自己找3的倍數(shù),匯報交流后通過對比(一種是沒有順序,一種是有序的)得出如何有序地找一個數(shù)的倍數(shù)的方法。對于倍數(shù),學生在以前的.學習中已有所接觸,所以學生很容易學,用的時間也比較少。

  對于找一個數(shù)的因數(shù),學生最容易犯的錯誤就是漏找,即找不全。所以在學生交流匯報時,我結合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。這樣的板書幫助學生有序的思考,形成明晰的解題思路。學生通過觀察,發(fā)現(xiàn)當找到的兩個自然數(shù)非常接近時,就不需要再找下去了。書寫格式這一細節(jié)的教學,既避免了教師羅嗦的講解,又有效突破了教學難點。

倍數(shù)和因數(shù)教學反思6

  本節(jié)課的內(nèi)容涉及的概念非常多,即抽象又容易混淆,如何使學生更加容易理解這些概念,理清概念之間的相互聯(lián)系,構建知識之間的網(wǎng)絡體系是本節(jié)課教學的重難點,同時學會整理知識的方法更是本節(jié)課教學的靈魂。

  成功之處:

  1、構建知識網(wǎng)絡體系,理清知識之間的相互聯(lián)系。在教學中,我首先通過一個聯(lián)想接龍的游戲調(diào)動學生學習的興趣,讓學生利用因數(shù)和倍數(shù)單元的知識來描述數(shù)字2,學生非常容易想到2是最小的質(zhì)數(shù)、2是偶數(shù)、2的因數(shù)是1和2、2的倍數(shù)有2,4,6…、2的倍數(shù)特征是個位是0、2、4、6、8的數(shù),通過學生的回答教師及時抓住其中的關鍵詞引出本單元的所有概念:因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)、公因數(shù)、最大公因數(shù)、公倍數(shù)、最小公倍數(shù)、2的倍數(shù)特征、3的倍數(shù)特征、5的倍數(shù)的特征。如何整理使這些凌亂的概念變得更加簡潔、更加有序、更加能體現(xiàn)知識之間的聯(lián)系呢?通過學生課前的整理發(fā)揮小組的合作交流作用,在相互交流中,學生相互學習、相互借鑒,逐漸對這些概念的聯(lián)系有了更進一步的認識,然后通過選取幾名同學的作品進行展評,最后教師和學生共同進行整理和調(diào)整,最終來完善知識之間的網(wǎng)絡體系。

  2、教給學生整理知識的方法。在教學中,是授人以魚不如授人以漁,作為教師莫過于教給學生必備的學習方法。在這節(jié)課的整理復習中,課前我讓學生把第二單元的關于因數(shù)和倍數(shù)的概念進行了匯總,涉及的概念有如下幾個:因數(shù)、倍數(shù)、公因數(shù)、公倍數(shù)、最大公因數(shù)、最小公倍數(shù)、質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)、2的倍數(shù)特征、3的倍數(shù)特征、5的倍數(shù)特征,并提出具體的要求:一是觀察分析這些概念,哪些概念之間有著密切的聯(lián)系;二是根據(jù)這些概念之間的緊密聯(lián)系可以分為幾類;三是用你自己喜歡的方法表示出來,可以以數(shù)學手抄報的形式來呈現(xiàn)。通過課前的設計,我事先搜集了一些有代表性的作品放在課件中,讓同學們進行欣賞,相互取長補短,共同學習,共同進步。課堂中在小組討論交流的`過程后,教師與學生共同對本單元的概念進行了整理和總結,并得出知識網(wǎng)絡圖。

  縱觀本節(jié)課的設計,就是通過學生的聯(lián)想,回憶前面學過的知識,并在頭腦中構建知識之間的相互聯(lián)系,從而揭示出這個知識網(wǎng)絡圖就是思維導圖。掌握了這種方法,就可以把數(shù)學中的每一個單元進行整理,也可以把每一冊知識進行整理,還可以把小學數(shù)學的知識進行系統(tǒng)的整理,從而讓學生體會到思維導圖方法的強大之處,學生在感嘆這種方法的魅力同時,并把這種方法推廣到其它學科,讓學生真正掌握知識整理的方法,并在以后的單元知識整理中加以運用。

  3、在練習中進一步對概念進行有針對性的復習。在練習環(huán)節(jié)中,我根據(jù)這些概念設計了一些相應的練習。目的是以練習促復習,在練習中更好的體會這些概念的具體含義,加深學生對概念的理解和掌握,學生在練習的過程中不僅掌握了知識整理的方法,還深刻地理解了知識的來龍去脈,對每個知識點的概念理解也更加清晰了,起到了復習回顧舊知識的作用。

  不足之處:

  1、個別學生在展評中不會去評價,只是從設計的美觀上去思考,而沒有從體現(xiàn)知識之間的聯(lián)系上去進行說明,在這一點上教師還要加以引導。

  2、出現(xiàn)個別學生由于第二單元的知識是在開學初學習的,有些知識點已經(jīng)遺忘,導致出現(xiàn)連最小的偶數(shù)是幾都不知道了,因此在學完每個單元后要不間斷的進行知識的鞏固和練習。

  3、由于本節(jié)課的知識點過于多,練習的時間有些不足,導致基本的練習時間可以保障,但是需要拓展的知識沒有更好的呈現(xiàn)出來。

  再教設計:

  1、抓住數(shù)學知識的本質(zhì),美觀的整理形式只是一些外在的,并不是重點,注意引導學生從數(shù)學的本質(zhì)去思考問題,排除數(shù)學本質(zhì)以外的東西,去引發(fā)思考,從而形成良好的數(shù)學思維品質(zhì)。

  2、還要繼續(xù)深入挖掘數(shù)學的思想、靈魂和方法,用以指導課堂教學,讓學生掌握以后學習知識的鑰匙,學會開啟知識的大門。

倍數(shù)和因數(shù)教學反思7

  在本節(jié)課中,我加強了操作,讓學生通過動手拼12個小正方形為長方形,經(jīng)歷操作活動可以喚醒學生相關的數(shù)學活動經(jīng)驗,幫助學生在操作的過程中有意識地感受1和12、2和6、3和4這幾組數(shù)和12之間的有機聯(lián)系,為隨后學生有意義學習倍數(shù)和因數(shù)的概念打下基礎。

  找一個數(shù)的因數(shù)是本節(jié)課的一個難點,學生通過寫乘法算式和出發(fā)算式,感受到因數(shù)是成對出現(xiàn)的,同時要求學生在寫一個數(shù)的因數(shù)時,一前一后成對地寫出來,寫好以后是一串從小到大排列的數(shù),從而做到有序、不重復、不遺漏。而對于總結一個數(shù)倍數(shù)和因數(shù)的特征及其個數(shù)時,則引導學生自己通過觀察來感悟,學生學習的主動性和創(chuàng)造性得到了較好的'體現(xiàn)。

  我在課上對于認識因數(shù)和倍數(shù)的教學所花的時間比較多,雖然也完成了教學任務,但是“想想做做”沒來得及完成,十分遺憾。

倍數(shù)和因數(shù)教學反思8

  在本課教學時,先讓學生用12個同樣大小的正方形,擺成一個長方形,并用乘法算式把自己的擺法表示出來,讓學生動手操作、合作交流,怎樣擺,有哪些不同的擺法?先讓學生小組交流、操作后,以其中的一道乘法算式為例,引出倍數(shù)和因數(shù)的概念。

  這樣的安排,體現(xiàn)了以學生為本,用學生已有的經(jīng)驗和動手操作能力,很好的調(diào)動了學生學習的積極性和主動性。一方面讓學生樂于接受,是學生在展示自己的想法,老師僅僅是組織者;另一方面培養(yǎng)了學生善于觀察和傾聽他人的想法的良好學習態(tài)度。對于找一個數(shù)的倍數(shù)比找一個數(shù)的因數(shù)的方法要容易些,所以我先教學如何找一個數(shù)的倍數(shù),在學生學會了找一個數(shù)的倍數(shù)的方法基礎上,再教學如何找一個數(shù)的因數(shù),這樣教學便于學生自己探索并總結歸納出找一個數(shù)的因數(shù)的方法,體現(xiàn)了讓學生自主學習。

  在處理本節(jié)課的.難點找36的因數(shù)時,我原來是放手讓學生自己去找的。結果試上時很多學生沒有頭緒,無從下手。時間倒是花去不少,可方法卻沒有多少可行的。我靜下心來尋找原因,找一個的因數(shù)是學生以前從未遇到過的問題,自然不知道如何解決。再加上找一個數(shù)的因數(shù)比找一個數(shù)的倍數(shù)要難得多,我這樣貿(mào)然地放手,學生當然不知所措了。后來,在處理找36的因數(shù)時,如何做到既不重復又不遺漏地找36的因數(shù)?我認為要對學生扶放得當,要有適當?shù)胤觯瑢W生才能探索出方法。于是,我讓學生回憶剛才的幾道乘法算式,然后把找一個數(shù)的倍數(shù)的方法有效的遷移到找一個數(shù)的因數(shù)中。果然學生知道了該如何思考后,效果好了很多。

倍數(shù)和因數(shù)教學反思9

  《因數(shù)和倍數(shù)》是人教版小學數(shù)學五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學概念課,所涉及的知識點較多,內(nèi)容較為抽象,對于學生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運用“先學后教”的模式,達到課堂的高效,在課堂中我做了以下的嘗試。

  一、領會意圖,做到用教材教。

  我覺得作為一名教師,重要的是領會教材的編寫意圖,靈活的運用教材,讓每個細節(jié)都能發(fā)揮它應有的作用。如教材是利用了一個簡單的實物圖(2行飛機,每行6架;3行飛機,每行4架)引出了要研究的兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的.概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關系明確的看到因數(shù)倍數(shù)這種相互依存的關系。

  但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機,你可以怎樣去排列?”學生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關系,更是后面“如何求一個數(shù)的因數(shù)”的方法的滲透和引導?磥盱`活的運用教材,深放領會意圖,才能使教學更為輕松、高效!

  二、模式運用,做到靈活自然。

  模式是一種思想或是引子,面對不同的課型,我們應該大膽嘗試,不斷的積累經(jīng)驗,使模式不再是僵化的,機械的。只要是能促進學生能力形成的東西,我們不能因為要運用模式而把它們淡化,反之,應該想方設法,在不知不覺中體現(xiàn)出來。

  如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設計已經(jīng)能夠體現(xiàn)學生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學生進入到下面的學習中呢?而沒有必要非要設計出兩個“自學指導”讓學生按步就搬地往下走,而且讓學生對比著去感受一個數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學例1再學例2的方式更容易讓學生發(fā)現(xiàn)不同,得到方法,加深對知識的理解,同時也更加體現(xiàn)了學生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導更有效!

倍數(shù)和因數(shù)教學反思10

  這是一節(jié)概念課,關于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學意義,只是借助乘法算式來認識倍數(shù)和因數(shù),從而體會倍數(shù)和因數(shù)的意義,進而讓學生探究尋找一個數(shù)的倍數(shù)和因數(shù)以及倍數(shù)和因數(shù)的特征。

  這部分知識對于四年級學生而言,沒有什么生活經(jīng)驗,也談不上有什么新興趣,是一節(jié)數(shù)學味很濃的概念課,因此為了讓乏味變成有味,在課開始之前,跟同學們講了韓信點兵的故事,從一個同余問題的解決讓學生產(chǎn)生興趣,并告知學生所用知識與本節(jié)課所學知識有很大關聯(lián),引導學生認真學好本節(jié)課的知識。

  在教授倍數(shù)和因數(shù)時,我讓學生自己動手操作,感受不同形狀下所得到的不同乘法算式,通過這些乘法算式認識倍數(shù)和因數(shù),并且讓學生自己想一道乘法算式,讓同桌用倍數(shù)和因數(shù)說一說,從學生的'自身素材去理解概念,使學生對新知識印象更深刻,從而使學生進一步理解和掌握倍數(shù)和因數(shù)。但是,在這一環(huán)節(jié)中,由于緊張,忘記讓學生從“能不能直接說3是因數(shù),12是倍數(shù)”這一反例中體會倍數(shù)和因數(shù)是一種相互依存的關系,以致到后面做判斷時出現(xiàn)很多同學認為“6是因數(shù),24是倍數(shù)”這種說法是正確的。

  本節(jié)課的難點是找一個數(shù)的因數(shù),因此,我將教材中先教找一個數(shù)的倍數(shù)改成先教找一個數(shù)的因數(shù),也正因為找一個數(shù)的因數(shù)比較有難度,所以,我先讓學生根據(jù)之前例題中的三個乘法算式來說一說12的因數(shù),從而讓學生感受到找一個數(shù)的因數(shù)可以利用乘法算式來找,并且初步讓學生感受有序的思想,給學生一個方法的認知。為了讓學生得到反思,在找的過程中,請學生互評,在交流中產(chǎn)生思維的碰撞;請學生自己糾正,在錯誤中產(chǎn)生反思意識,從而能夠提升學生自主解決問題的能力。

  可是,作為一名新教師,對于課堂中的生成,沒有足夠的經(jīng)驗和課堂機智將其很好的轉(zhuǎn)化成學生所需達到的目標,以致跟預設的效果不一致,學生沒有很充分地得到反思。并且對于課堂中的一些細節(jié)問題,處理得還不夠到位。本節(jié)課的教學對于我來說是一個機會,也是一個契機,今后,我會不斷完善教學,總結經(jīng)驗教訓,在各個方面嚴格要求自己,爭取在今后的工作中做的更好!

倍數(shù)和因數(shù)教學反思11

  反思教學效果總結了的原因有以下幾點:

 。ㄒ唬┧財(shù)和合數(shù)的判斷不熟練。一些數(shù)如:49、51、91這些數(shù)看上去是素數(shù),但其實是合數(shù)。這些數(shù)經(jīng)常被學生誤認為是素數(shù)而導致錯誤,原因是這些學生就簡單的看看,而不愿意用2、3、5等素數(shù)去嘗試,努力尋找是不是有第3個因數(shù)存在。

 。ǘ┮馑枷嗤Z句表述不同時,有的學生就不能正確理解。如:在上面的數(shù)只有兩個因數(shù)的數(shù)有哪些?其實這道題目就是問在上面的數(shù)中素數(shù)有哪些。

 。ㄈ┯械膶W生缺少分析理解,研究和判斷的能力,判斷和選擇題的錯誤比較多。例如:1的倍數(shù)肯定是奇數(shù)。如果一個學生先找到1的倍數(shù),然后根據(jù)數(shù)的特點作出正確的判斷。但有的學生看到1是個奇數(shù),然后就簡單地做出它的倍數(shù)也是奇數(shù)想法。例如:一個數(shù)的倍數(shù)一定比它的因數(shù)大。如果學生找一個數(shù),看看它的最小倍數(shù)是哪個?找找它的最大因數(shù)是哪個?這樣不難找到正確的答案。但是有的倍數(shù)簡單地被題目的意思誤導,加上平時的練習中還有倍數(shù)一般都是大的,因數(shù)一般都是小的概念,學生容易誤判。

  教學中,我和學生有時太滿足于平時練習的結果,而缺少讓學生進行數(shù)學思考和表達能力的過程訓練?磥碓谝院蟮腵教學中,我要繼續(xù)改變教學觀念,要高度尊重學生,依靠學生,把以往教學中主要依靠教師轉(zhuǎn)變?yōu)橐揽繉W生。

  建議

  1、在新知教學中,注重引導學生進行探究。在本單元中找一個數(shù)的倍數(shù)和因數(shù),都有比較好的方法。如何通過學生的探究找到方法,成了教學的亮點。如“找36的因數(shù)” ,找一個數(shù)的因數(shù)是本課的難點。應該說,找出36的幾個因數(shù)并不難,難就難在找出36的所有因數(shù)。教學中,建議教師不要把方法簡單地告訴學生,而是讓學生獨立去探究,獨立寫出36的所有因數(shù),在學生反饋的基礎上教師再引導學生對有序和無序作比較,學生才能在比較、交流中感悟有序思考的必要性和科學性。交流的過程正是學生相互補充、相互接納的過程,是對學習內(nèi)容進行深加工和重組知識的過程,是學生的認知不斷走向深入,思維水平不斷提升的過程。這是新知探究階段的思維交流。既是不斷深化理解因數(shù)與倍數(shù)知識的過程,又是培養(yǎng)學生良好思維品質(zhì)的過程。給學生獨立思考的空間,提出了各自的解法或見解,是思維獨創(chuàng)性的培養(yǎng);引導學生一對一對有序的找,或從1開始,用除法一個個去試,是思維條理性的培養(yǎng);既有遷移于擺方塊的形象思維,又有直接運用除法算式的抽象思維,或乘除法口訣的綜合運用等,在感受解法多樣性中,培養(yǎng)了學生思維的靈活性。

  2、寓教于樂,游戲中進行相應的鞏固練習。本節(jié)課是一節(jié)概念課,內(nèi)容比較枯燥,課本上的練習形式也比較單一,所以在認識倍數(shù)和因數(shù)后,應安排有趣味的游戲,比如數(shù)字轉(zhuǎn)盤游戲,讓學生看轉(zhuǎn)盤說指針停止時,內(nèi)圈的數(shù)與外圈的數(shù)的關系,進一步認識倍數(shù)和因數(shù),又能從中發(fā)現(xiàn)倍數(shù)和因數(shù)的相互依存的關系。在學會找倍數(shù)和因數(shù)之后也可設計游戲,如:“猜猜一位老師的電話號碼”,在一個八位數(shù)的號碼中已知其中四位,根據(jù)有關倍因數(shù)關系的問題請學生找出未知的四位號碼,以提高學生學習的積極性,稍有難度的練習給學有余力的學生一個證明自己能力的機會,讓學生在數(shù)學活動中體驗到數(shù)學學習的趣味性和挑戰(zhàn)性,學生運用所學知識解決問題,體會到了學習新知識后的成就感。

  3、教師要注重評價的導向作用,讓學生在評價中成長。在第一課時學生交流12的因數(shù)時,教師展示了三位同學的作業(yè):第一種是無序的,第二種是從小到大有序的,第三種是一對一對有序的。接著老師讓第一種方法的學生說說自己的想法,并讓其他同學評論,此時大多數(shù)學生的評價都認為不好,找得缺漏、無序,這時其實作為老師是否可以問問這種答案“有沒有值得肯定的地方?”,畢竟找到的這些答案都是正確地,然后再去尋找更好的方法。如果老師能經(jīng)常注意這樣引導評價,學生自然而然地意識到要先看別人的優(yōu)點,再看別人的缺點,也給了剛才那位學生一個心理上的安慰,使他能更積極地投入到學習當中去。

倍數(shù)和因數(shù)教學反思12

  總的感覺是上好一堂課不容易。當確定好內(nèi)容后,我和吳艷、顧志成三人各自備課,第二天放學后化了整整一個半小時討論教案,后又幾經(jīng)修改,但總感到時間來不及。倍數(shù)和因數(shù)是學生聞所未聞的兩個新概念,是純知識性的內(nèi)容,學起來比較枯燥。如何使學生通過四十分鐘愉快輕松的學習掌握這乏味的概念性內(nèi)容,如何開頭,各部分之間怎樣銜接,每一個知識點采取何種形式呈現(xiàn)、展開,重點如何突出,難點如何突破,那幾天這許多問題始終盤繞在腦海中,課上下來根據(jù)學生的參與情況,掌握程度可以說達到了教學目標。我覺得整個課堂教學注意了以下幾點:

  1、捕捉生活與數(shù)學之間的聯(lián)系,幫助學生理解概念間的關系。

  試上下來我感覺學生對倍數(shù)因數(shù)間的相互依存關系理解不到位,看著學生我突然想到可以利用學生喬雨雷、喬風光兄弟間的關系呀,于是我把生活中的相互依存關系遷移到數(shù)學中的倍數(shù)和因數(shù),這樣設計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,初步學會從數(shù)學的角度去觀察事物、思考問題,激發(fā)對數(shù)學的興趣,又幫助學生理解了倍數(shù)因數(shù)之間的相互依存關系。

  2、注意引導學生進行有效的合作學習。

  動手實踐、自主探索、合作交流是新課程倡導的學習方式,公開課不管上的什么內(nèi)容,不管有沒有必要往往都要叫學生討論,看起來熱熱鬧鬧,其實有多少學生真正參與了討論。往往是一組中的優(yōu)等生把答案說出,其他學生洗耳恭聽。當3、2、5的倍數(shù)寫出來后,我問:“整體觀察這幾個數(shù)的倍數(shù),你認為一個數(shù)的倍數(shù)有什么特點?”首先問題有討論的價值與必要性,其次當問題提出后我先讓學生獨立思考,看到學生陸續(xù)舉手時,再組織學生討論交流,完善自己的想法。(其實這是我一貫的做法,必須在每個學生獨立思考的基礎上進行合作學習。)

  3、內(nèi)容環(huán)環(huán)相扣、過度自然流暢。

  從生活中的相互依存關系遷移到數(shù)學中的倍數(shù)因數(shù),從而揭示課題,引出誰是誰的倍數(shù),誰是誰的因數(shù),到找一個數(shù)的倍數(shù)或因數(shù),歸納找的方法。整個教學過程環(huán)環(huán)緊扣、一氣呵成,通達順暢。

  4、練習設計由易到難,由淺入深,既鞏固了新知,又發(fā)展了思維。

  “找朋友”游戲,答案不唯一,學生思考問題的空間很大,培養(yǎng)了學生的`發(fā)散思維能力。讓學生判斷自己的學號數(shù)是哪些數(shù)的倍數(shù),老師手里拿了2、3、5幾張數(shù)字卡片,老師出示卡片,如果學生的學號數(shù)是老師出示卡片的倍數(shù)就可以站起來。最后留下了學號是1、7、11、13、17、19、23、29、31、37、41、43、47的學生,讓學生想辦法如果他們也要站起來,老師出示的卡片上應是幾?學生面對問題積極思考,享受了數(shù)學思維的快樂。

  疑問:一開始的擺12個小正方形拼成長方形,得出三個積是12的乘法算式,我想這里的操作可否省去?一方面用去時間較多,對教學內(nèi)容關系不大,如果說是培養(yǎng)操作能力也不是在這個時候。另一方面這堂課練習時間比較少,擠出的時間可用于練習。

  我想如果我們每堂課都能精心設計的話,對學生對我們教師都會有很大的提高。

倍數(shù)和因數(shù)教學反思13

  這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇,同時,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:

  一、操作實踐,舉例內(nèi)化,認識倍數(shù)和因數(shù)

  我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結合,變抽象為直觀。首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學到數(shù)學,讓學生自主體驗數(shù)與形的結合,進而形成因數(shù)與倍數(shù)的意義.使學生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學習、利用、挖掘教材,用學生已有的數(shù)學知識引出了新知識,減緩難度,效果較好。

  二、自主探究,意義建構,找倍數(shù)和因數(shù)

  整個教學過程中力求體現(xiàn)學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節(jié)課中,教師始終為學生創(chuàng)造寬松的學習氛圍,讓學生自主探索,學習理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。

  新課程提出了合作學習的學習方式,教學中的多次合作不僅能讓學生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學生的合作學習能力,初步形成合作與競爭的意識。

  找一個數(shù)因數(shù)的方法是本節(jié)課的難點,在教學過程中讓學生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學生完成的不是很好,我就決定先交流在讓學生尋找,這樣就用了很多時間,最后就沒有很多的時間去練習,我認為雖然時間用的過多,但我認為學生探索的比較充分,學生也有收獲。如何做到既不重復又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里可以充分發(fā)揮小組學習的優(yōu)勢。先讓學生自己獨立找36的因數(shù),我巡視了一下三分之一的學生能有序的思考,多數(shù)學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這時老師再給予有效的指導和總結。

  三、變式拓展,實踐應用---—促進智能內(nèi)化

  練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性,趣味性。在游戲中,師生互動,激活了學生的情感,學生的思維不斷活躍起來,學生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關注學生學習興趣、學習熱情、學習自信等情感因素的培養(yǎng),并及時讓學生感受到學習成功的喜悅,享受數(shù)學,感悟文化魅力。

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,是比較抽象的,本冊教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。本節(jié)課是這一單元的的教學重點。為讓學生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時進行。第一課時只讓學生認識了因數(shù)和倍數(shù)的`意義及找一個數(shù)的因數(shù)的方法。

  一、設計情境,引起思考。

  創(chuàng)造性的使用教材,引起學生思考,板書15÷0.3=50,1.5÷3=0.5,1.5÷0.3=5,15÷3=5引出除盡和整除的含義,從而明確了因數(shù)倍數(shù)的研究范圍,進而理解決因數(shù)與倍數(shù)的意義。對于因數(shù)與倍數(shù)的依存關系,學生在理解時比較抽象,我就放到具體算式里,算式由學生舉例,反復去說誰是誰的倍數(shù),誰是誰的因數(shù),在課堂中反復強調(diào),幫助學生認真理解辨析,從而理解了因數(shù)與倍數(shù)之間的相互依存關系。學生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了。

  二、引導學生探求找因數(shù)的方法。

  如何找一個數(shù)的因數(shù)是這節(jié)課的又一個重點,首先讓學生找出24的因數(shù),由于個人經(jīng)驗和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學生明白了如何求出一個數(shù)的因數(shù)的方法,從而掌握了知識點。

  根據(jù)學生的學習特點,靈活的應用教材,使之服務于教學,讓教學有效的進行,才能達到教學的目的。在探索找一個數(shù)的因數(shù)的方法時,為了讓學生更加形象地體會出“要按照一定的順序去找”才不會遺漏和重復,充分運用多媒體,通過演示18、24、77、1的因數(shù),讓學生直觀地看到了“順序”,學會有序思考,體會到了求一個數(shù)的因數(shù)的方法。與此同時學生直觀觀察發(fā)現(xiàn)一個數(shù)的因數(shù)都有1和它本身,最小的因數(shù)是1,最大的因數(shù)是它本身,不是數(shù)字越大因數(shù)個數(shù)就越多,一個數(shù)的因數(shù)的個數(shù)是有限的等等重要相關知識,這些發(fā)現(xiàn)與課堂練習息息相關,形成本節(jié)課完整的知識體系,還為后面的學習做好鋪墊。課堂練習完成的很好,起到學以致用的學習效果。培養(yǎng)學生的概括能力、歸納能力,抽象能力得以進一步發(fā)展。

倍數(shù)和因數(shù)教學反思14

  本節(jié)課的內(nèi)容是在學生已經(jīng)學習了一定的整數(shù)知識(包括整數(shù)的知識、整數(shù)的四則運算及其應用)的基礎上,進一步認識整數(shù)的性質(zhì)。本單元所涉及的`因數(shù)和倍數(shù)都是初等數(shù)論的基礎知識。

  成功之處:

  1.理解分類標準,明確因數(shù)和倍數(shù)的含義。在例1教學中,首先根據(jù)不同的除法算式讓學生進行分類,同時思考其標準依據(jù)是什么。通過學生的獨立思考和小組交流學生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

  2.厘清概念倍數(shù)和幾倍,注重強調(diào)倍數(shù)和因數(shù)的相互依存性。在教學中可以直接告訴學生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進行研究,它的研究范圍較之倍數(shù)范圍大一些。

  不足之處:

  1.練習設計容量少了一些,導致課堂有剩余時間。

  2. 對因數(shù)和倍數(shù)的含義還應該進行歸納總結上升到用字母來表示。

  再教設計:

  1.根據(jù)課本的練習相應的進行補充。

  2.因數(shù)和倍數(shù)的含義用總結為a÷b=c(a、b、c均為非0自然數(shù)),a是b和c的倍數(shù),b和c是a的因數(shù)。

倍數(shù)和因數(shù)教學反思15

  不知不覺,我們又進行了第二單元的學習。第二單元的內(nèi)容是《因數(shù)與倍數(shù)》,這部分內(nèi)容與老教材相比變化很大,我覺得第二、四單元是本冊教材中變化最大的單元,要引起足夠的重視。

  1、以往認識因數(shù)和倍數(shù)是借助于整除現(xiàn)象,“X能被X整除,或X能整除X”,所以X是X的因數(shù),X是X的倍數(shù),F(xiàn)在的教材完全不同了,2X3=6,所以2和3是6的因數(shù),6是2和3的倍數(shù),借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。

  2、以往數(shù)學教材中,概念教學的'量很大。數(shù)的整除,因數(shù)(老教材稱為約數(shù)),倍數(shù),2、5、3的倍數(shù)的特征(老教材稱為能被2、5、3整除的數(shù)的特征),質(zhì)數(shù),倒數(shù),分解質(zhì)因數(shù),最大公因數(shù)(以往的教材中稱為最大公約數(shù)),最小公倍數(shù)等內(nèi)容共同編排在后面,合為一個單元。而現(xiàn)在新教材本單元只安排了因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)合數(shù)。其它內(nèi)容安排在了第四單元《分數(shù)的意義和性質(zhì)》,借助約分引出公約數(shù)、公倍數(shù)的學習,改變了概念多而集中,抽象程度過高的現(xiàn)象。

  3、以往求最大公約數(shù),最小公倍數(shù)時,采用的方法是唯一的、固定的,也就是有短除法分解質(zhì)因數(shù),而新教材中鼓勵方法多樣化,不把它作為正式的內(nèi)容教學,而是出現(xiàn)在教材的你知道嗎中?不那么呆板了,尊重學生的思維差異。

  可見,編者為體現(xiàn)新課標精神對本部分內(nèi)容作了精心的調(diào)整,煞費苦心,可是學完了本單元的第一部分和第二部分內(nèi)容,我對本單元的學習內(nèi)容有了小小的疑問。這一單元內(nèi)容分為因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)和合數(shù),我覺得第一部分內(nèi)容和第三部分內(nèi)容的關系很大,連續(xù)性強。知道了什么是因數(shù)和倍數(shù),也會找一個數(shù)的因數(shù)和倍數(shù)了,那么就應該從找因數(shù)和個數(shù)問題上學習質(zhì)數(shù)和合數(shù)。教材對質(zhì)數(shù)和合數(shù)的學習內(nèi)容設計較好,開門見山讓學生找出1-20各數(shù)的因數(shù),觀察因數(shù)的個數(shù)有什么規(guī)律,再引出質(zhì)數(shù)和合數(shù)的學習。可為什么在中間突然加上了2、5、3的倍數(shù)的特征?這樣感覺前后內(nèi)容失去了聯(lián)系,不夠自然流暢。所以我覺得可以把二三部分內(nèi)容作為適當?shù)恼{(diào)整,即因數(shù)和倍數(shù),質(zhì)數(shù)和合數(shù),2、5、3的倍數(shù)的特征會比較好一些。

【倍數(shù)和因數(shù)教學反思】相關文章:

因數(shù)和倍數(shù)教學反思10-22

因數(shù)和倍數(shù)的教學反思02-14

倍數(shù)和因數(shù)的教學反思03-13

《倍數(shù)和因數(shù)》教學反思04-11

《因數(shù)和倍數(shù)》教學反思02-06

因數(shù)和倍數(shù)教學反思02-07

《因數(shù)和倍數(shù)》數(shù)學教學反思02-09

因數(shù)和倍數(shù)教學反思14篇02-11

倍數(shù)和因數(shù)教學反思(15篇)02-28