爸爸的朋友在线观看,美国毛片免费看,337p日本在线,亚洲女人日B

圓錐的體積教案

時間:2024-10-02 01:12:35 教案 我要投稿

圓錐的體積教案(15篇)

  作為一無名無私奉獻的教育工作者,通常需要用到教案來輔助教學,借助教案可以更好地組織教學活動。那么問題來了,教案應該怎么寫?以下是小編精心整理的圓錐的體積教案,歡迎大家借鑒與參考,希望對大家有所幫助。

圓錐的體積教案(15篇)

圓錐的體積教案1

  1、學生通過自己的實驗,非常順利地得到等底等高的圓柱和圓錐體積之間的關系,推導出來圓錐的體積計算公式。原因之處有:(1)猜想:發(fā)揮學生的空間想象,使學生初步建立圓錐與圓柱體積之間的關系,教師預設學生可能粗略地知道有“三分之一”這一關系,“那么三分之一這一關系怎樣推導呢”引起以下怎樣推導圓錐的體積這一過程。

 。2)在推導過程中,帶著思考題(思考題實際就是學生實驗的過程),讓學生帶有目標進行實驗,讓學生更有目的性,也非常方便,有操作性。

 。3)學具準備充分,各小組選擇水、沙子,增強趣味性,主動性,積極性高。

 。4)公式推導完之后的一個反例子(出示一個非常大的圓柱和一個非常小的'圓錐),讓學生明確并不是所有的圓錐的體積都是圓柱體積的三分之一,從而強調了等底等高。

  2、練習題由淺入深,判斷題主要是要加深學生對概念、公式的運用和理解,第2題是書上的一組題,為提高效率只列式不計算,這三道題分別是告訴底面積和高、底面半徑和高、底面直徑和高,把幾種類型都呈現(xiàn)出來。最后一題是動手實踐題,一要考察學生的公式運用情況,二要考察學生的解決實際問題的能力及策略,雖然沒做幾道題,但我覺得:解決問題比什么都重要。

  3、本來想用不等底、不等高的圓柱和圓錐參與實驗,考慮到可能會得出錯誤結論而影響體積公式的推導,所以把這一環(huán)節(jié)省去。設計了一組大的等底等高的圓錐和圓柱,讓學生明確不管大小,只要等底等高就有3倍這樣的關系。

  4、時間分配上不到位,例題的處理中,考慮到本節(jié)的重點是理解公式并運用公式,所以沒花多的時間,由于數(shù)字教大,部分學生沒做完。

圓錐的體積教案2

  教學內容:

  教科書第20~21頁例5及相應的試一試,練一練和練習四的第1~3題。

  教學目標:

  1.組織學生參與實驗,從而推導出圓錐體積的計算公式。

  2.會運用圓錐的體積計算公式計算圓錐的體積。

  3.培養(yǎng)學生觀察、比較、分析、綜合的能力以及初步的空間觀念。

  4.以小組形式參與學習過程,培養(yǎng)學生的合作意識。

  5.滲透轉化的數(shù)學思想。

  教學重點:

  理解和掌握圓錐體積的計算公式。

  教學難點:

  理解圓柱和圓錐等底等高時體積間的倍數(shù)關系。

  教學資源:

  等底等高的圓柱和圓錐容器一套,一些沙或米等。

  教學過程:

  一、聯(lián)系舊知,設疑激趣,導入新課。

  1.我們已經(jīng)知道了哪些立體圖形體積的求法?(學生回答時老師出示相應的教具---長方體,正方體圓柱體,然后板書相應的計算公式。)

  2.我們是用什么方法推出圓柱體積的計算公式的?(是把圓柱體轉化為長方體來推導的。板書:轉化)

  3.(出示教具)大家覺得這個圓錐與哪個立體圖形的關系最近呢?(老師比較學生指出的圓柱與圓錐的.底和高,引導學生發(fā)現(xiàn)這個圓柱與圓錐等底等高。)

  4.大家覺得我們今天要研究的圓錐的體積可能轉化為什么圖形來研究比較簡單呢?能說說自己的理由嗎?

  5.它們的體積之間到底有什么關系呢?

  二、實驗操作、推導圓錐體積計算公式。

  1.課件出示例5。

 。1)通過演示使學生知道什么叫等底等高。

 。2)讓學生猜想:圖中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關系?

 。3)實驗操作,發(fā)現(xiàn)規(guī)律。

 。ㄓ脤W具演示)在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的。

  老師把圓柱里的黃沙倒進圓錐,問:把圓柱內的沙往圓錐內倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?

 。4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。

  2.教師課件演示

  3.學生討論實驗情況,匯報實驗結果。

  4.啟發(fā)引導推導出計算公式并用字母表示。

  圓錐的體積=等底等高的圓柱的體積1/3=底面積高1/3

  用字母表示:V=1/3Sh

  小結:要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以1/3?

  5.教學試一試

 。1)出示題目

 。2)審題后可讓學生根據(jù)圓錐體積計算公式自己試做。

 。3)批改講評。注意些什么問題。

  三、發(fā)散練習、鞏固推展

  1.做練一練第1.2題。

  指名一人板演,其余學生做在練習本上。集體訂正,強調要乘以1/3。

  2.做練習四第1.2題。

  學生做在課本上。之后學生反饋。錯的要求說明理由。

  四、小結

  這節(jié)課你學習了什么內容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?

  學生交流

  五、作業(yè)

  練習四第3題。

圓錐的體積教案3

  教學目標:

  1.在理解圓錐體積公式的基礎上,能運用公式解決有關實際問題,加深對知識的理解。

  2.培養(yǎng)學生觀察、實踐能力。

  3.使學生在解決實際問題中感受數(shù)學與生活的密切聯(lián)系。

  教學重、難點:

  結合實際問題運用所學的知識

  教學理念:

  1.數(shù)學源于生活,高于生活。

  2.學生動手實踐,自主學習與合作交流相結合

  教學設計:

  一回顧舊知:

  1.圓錐的體積公式是什么?S、h各表示什么?

  2.求圓錐的體積需要知道什么條件?

  3.還知道哪些條件也能計算出圓錐的體積?怎樣計算?

  投影出示:

  (1)S=10,h=6V=?

  (2)r=3,h=10V=?

  (3)V=9.42,h=3S=?

  二運用知識,解決實際問題

  1.(投影出示例2:一堆小麥圖)師:有這樣一堆小麥,你知道它的'體積是多少嗎?怎么辦呢?

  2.這些數(shù)據(jù)都是可以測量的,F(xiàn)在給你數(shù)據(jù):高為1.2米,底面直徑為4米

  (1)麥堆的底面積:

  (2)麥堆的體積:

  3.知道了體積,這堆小麥大約有多少重能知道嗎?(每立方米小麥約735千克)(得數(shù)保留整千克數(shù))

  4.一個圓錐形沙堆,占地面積為3.14平方米,高1.5米。

  (1)沙堆的體積是多少平方米?

  (2)如果每立方米沙約重1.6噸,這些沙子共重多少噸?(結果保留一位小數(shù))

  5.用一根底面直徑2分米,高10分米的圓柱體木料,削成一個的圓錐,要削去多少立方分米的木料?

  (1)(出示圖)什么情況下削出的圓錐是的?為什么?

  (2)削去的木料占原來木料的幾分之幾?

  (3)如果這是一塊長4分米,寬2分米,高1分米的長方體木料,又在什么情況下削出的圓錐是的呢?

  三綜合練習

  1.一個圓柱的底面積為81平方厘米,高12厘米,和它等體積等底的圓錐高為()厘米;和它等體積等高的圓錐的底面積為()厘米。

  2.將一個體積為16立方分米的圓錐形容器盛滿水,倒入一個底面積為10平方分米的圓柱體容器中,水面的高度是()分米

  3.一個圓柱和一個圓錐的體積相等,如果圓柱的高是圓錐的4/5,那么圓柱的底面積是圓錐的幾分之幾?

圓錐的體積教案4

  教學目標

  1、通過練習學生進一步理解、掌握圓錐的特征及體積計算公式。

  2、能正確運用公式計算圓錐的體積,并解決一些簡單的實際問題。

  3、培養(yǎng)學生認真審題,仔細計算的習慣。

  重點:進一步掌握圓錐的體積計算及應用

  難點:圓錐體積公式的'靈活運用

  教學過程

  一、知識回顧

  1、前幾節(jié)課我們認識了哪兩個圖形?你能說說有關它們的知識嗎?

  2、學生說,教師板書:

  圓錐圓柱

  特征1個底面2個

  扇形側面展開長方形

  體積V=1/3SHV=SH

  二、提出本節(jié)課練習的內容和目標

  三、課堂練習

 。ㄒ唬、基本訓練

  1、填空課本1----2(獨立完成后校對)

  2、圓錐的體積計算

  已知:底面積、直徑、周長與高求體積(小黑板出示)

  (二)、綜合訓練:

  1、判斷

 。1)圓錐的體積等于圓柱的1/3

  (2)長方體、正方體、圓柱和圓錐的體積公式都可用V=SH

 。3)一個圓柱形容器盛滿汽油有2.5升,這個容器的容積就是2.5升

 。4)圓錐的體積是否4立方厘米,底面積是6平方厘米,那么高是4厘米

  2、應用:練習四第45題任選一題

  3、發(fā)展題:獨立思考后校對

  四課堂小結:說說本節(jié)課的收獲

圓錐的體積教案5

  教學要求:

  l.使學生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。

  2.使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。

  3.培養(yǎng)學生初步的空間觀念和發(fā)展學生的思維能力。

  教具準備:長方體、正方體、圓柱體等,根據(jù)教材第14頁練一練第1題自制的圓錐,演示測高、等底、等高的教具

  演示得出圓錐體積等于等底等高圓柱體積的 的教具。

  教學重點:掌握圓錐的特征。

  教學難點:理解和掌握圓錐體積的計算公式。

  教學過程:

  一、復習引新

  1. 說出圓柱的體積計算公式。

  2. 我們已經(jīng)學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常?吹较旅嬉恍┪矬w(出示教材第13頁插圖)。

  這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學習圓錐和圓錐的體積。(板書課題)

  二、教學新課

  1.認識圓錐。

  我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?

  2.根據(jù)教材第13頁插圖,和學生舉的例子通過幻燈片或其他方法抽象出立體圖。

  3.利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。

  (1) 圓錐的底面是個圓,圓錐的側面是一個曲面。

  (2) 認識圓錐的頂點,從圓錐的頂點到底面圓心的距離是圓錐的高。(在圖上表示出這條高)提問:圖里畫的這條高和底面圓的所有直徑有什么關系?

  4.學生練習。

  5.教學圓錐高的測量方法。(見課本第13頁有關內容)

  6.讓學生根據(jù)上述方法測量自制圓錐的高。

  7.實驗操作、推導圓錐體積計算公式。

  (1)通過演示使學生知道什么叫等底等高。(具體方法可見教材第14頁上面的圖)

  (2)讓學生猜想:老師手中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關系?

  (3)實驗操作,發(fā)現(xiàn)規(guī)律。

  在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看

  你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的 。

  老師把圓柱里的黃沙倒進圓錐,問:把圓柱內的沙往圓錐內倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?

  (4)是不是所有的`圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗

  得出只有等底等高的圓錐才是圓柱體積的 。

  (5)啟發(fā)引導推導出計算公式并用字母表示。

  圓錐的體積=等底等高的圓柱的體積

  =底面積高

  用字母表示:V= Sh

  (6)小結:要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以 ?

  8.教學例l

  (1)出示例1

  (2)審題后可讓學生根據(jù)圓錐體積計算公式自己試做。

  (3)批改講評。注意些什么問題。

  三、鞏固練習

  1.做練一練第2題。

  指名一人板演,其余學生做在練習本上。集體訂正,強調要乘以 。

  2.做練習三第2題。

  學生做在課本上。小黑板出示,指名口答,老師板書。錯的要求說明理由。

  3.做練習三第3題。

  讓學生做在課本上。小黑板出示、指名口答,老師板書。第(3)、(4)題讓學生說說是怎樣想的。

  四、課堂小結

  這節(jié)課你學習了什么內容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?

  五、課堂作業(yè)

  練習三第4、5題。

圓錐的體積教案6

  圓錐的體積教學目的:使同學初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,發(fā)展同學的空間觀念。

  學具準備:等底等高的圓柱和圓錐8組,比圓柱體積多的沙土

  教學過程:

  一、復習

  1、圓錐有什么特征?

  使同學進一步熟悉圓錐的特征:底面,側面,高和頂點。

  2、圓柱體積的計算公式是什么?

  指名同學回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數(shù)學學習中的應用。

  二、導人新課

  我們已經(jīng)學過圓柱體積的計算公式,那么圓錐的體積是不是和圓柱體積有關呢?今天我們就來學習圓錐體積的計算。

  板書課題:圓錐的體積

  三、新課

  1、教學圓錐體積的'計算公式。

  師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?

  指名同學敘述圓柱體積計算公式的推導過程,使同學明確求圓柱的體積是通過切拼生長方體來求得的。

  師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?

  先讓同學討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。

  教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么一起的地方?”

  然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”

  同學分組實驗。

  匯報實驗結果。先在圓錐里裝滿沙土,然后倒入圓柱。正好3次可以倒?jié)M。

  多指名說

  接著,教師課件邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的。請大家注意觀察,看看能夠倒幾次正好把圓柱裝滿?

  問:把圓柱裝滿一共倒了幾次?

  生:3次。

  師:這說明了什么?

  生:這說明圓錐的體積是和它等底等高的圓柱的體積的。

  多找?guī)酌瑢W說。

  板書:圓錐的體積=1/3 × 圓柱體積

  師:圓柱的體積等于什么?

  生:等于“底面積×高”。

  師:那么,圓錐的體積可以怎樣表示呢?

  引導同學想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。

  板書:圓錐的體積= 1/3 ×底面積×高

  師:用字母應該怎樣表示?

  然后板書字母公式:V=1/3 SH

  師:在這個公式里你覺得哪里最應該注意?

  2、鞏固練習

 。1)已知圓柱和圓錐等底等高。圓柱的體積是45立方厘米,圓錐的體積是( )立方厘米。已知圓柱和圓錐等底等高。圓錐的體積是20立方厘米,圓柱的體積是( )立方厘米。

 。2)求下面圓錐的體積。

  已知底面面積是9.6平方米,高是2米。

  底面半徑是4厘米,高是3.5厘米。

  底面直徑是4厘米,高是6厘米。

  在列式時注意什么?( ) 在計算時,我們怎樣計算比較簡便?(能約分的要先約分)

  (3)判斷:

  (l)圓錐體積是圓柱體積的1/3( )

 。2)圓柱體的體積大于與它等底等高的圓錐體的體積。( )

 。3)假如圓柱圓錐等底等高,圓柱體積是圓錐的3倍,圓錐體積是圓柱體積的2/3。( )

 。4)圓錐的底面積是3平方厘米,體積是6立方厘米。( )

圓錐的體積教案7

  教材分析:

  圓錐的體積是傳統(tǒng)的教學內容,對這部分內容的編排,在內容和要求方面沒有大的變化,實驗教材的編排體現(xiàn)了新的教學理念,使得教材的面貌發(fā)生了較大的變化。具體來說有這樣幾個變化:

 。1)加強了所學知識與現(xiàn)實生活的聯(lián)系。教材通過列舉大量現(xiàn)實生活中具有圓錐體特征實物直觀引入,讓學生觀察思考這些物體形狀的共同的特點,并從實物中抽象出它們的幾何圖形。當學生認識它們的主要特征后,又讓學生從生活中尋找更多的具體如此特征的實物,從而加強所學知識與現(xiàn)實生活的聯(lián)系,進一步感受幾何知識在生活中的廣泛應用。

  (2)加強了對圖形特征,體積、方法的探索過程。在以往的教學中,這部分內容的編排更側重于理解和掌握圖形的特征、體積的計算方法,而對于促進學生空間觀念的發(fā)展在學習素材和實踐操作方面都顯不夠。實驗教材加強了動手實踐、自主探索、,讓學生經(jīng)歷知識的形成過程,使學生獲得較多的有關自主探索和空間觀念的訓練機會。

 。3)加強了學生在操作中對空間與圖形問題的思考。

  學情分析:

  加強了學習方法的引導,鼓勵學生獨立思考,培養(yǎng)學生的學習能力。教材注意鼓勵學生運用已有的知識對新學習的內容進行聯(lián)想和猜測,再通過實驗和推理驗證,培養(yǎng)學生良好的學習和思考習慣。如:聯(lián)系圓柱體公式鼓勵學生猜測圓錐體積的計算方法。圓錐體積的.教學是按照引出問題聯(lián)想、猜測實驗探究導出公式的思路設計的,在猜測的基礎上進行試驗和推理,使學生受到研究方法和思維方式的訓練,發(fā)展和提高自主學習的能力。

  教學目標:

  1、理解并掌握圓錐的體積的計算方法,能運用公式解決簡單的實際問題。

  2、提高學生實際應用的能力。

  3、培養(yǎng)學生利于學習,勇于探索的精神。

  教學重點:

  圓錐的體積公式的推導過程。

  教學難點:

  進一步理解圓錐的體積公式,能運用公式進行計算,能解決簡單的實際問題。

  教學方法:

  合作交流自主探究動手操作

  教學準備:

  同樣的圓柱形容器若干,與圓柱等底等高的圓錐,與圓柱等高不等底的圓錐,與圓柱不等高不等底的圓錐,沙子和水

  教學過程:

  一復習導入

  1、提問:援助的體積公式是什么?

  2、出示圓錐的幾何圖形,學生說出圓錐的底面、側面和高

  3、導入:同學們,前面我們認識了圓錐,掌握了它的特征,那么,圓錐的體積公式怎樣計算呢?這節(jié)課我們就來研究這個問題。(板書課題:圓錐的體積)

  二探究新知

  (一)指導探究圓錐的體積計算公式

  1、師:下面我們用實驗來探究圓錐體積的計算方法。

  (1)老師給每組同學都準備了圓柱體和圓錐體容器、沙子和水

  (2)實驗要求

  做一做:實驗時先往圓錐里裝滿水往圓柱里倒,直到把圓柱里得倒?jié)M水為止。

  比一比:實驗前比一比援助和圓錐底面和高的關系。

  想一想:通過實驗你發(fā)現(xiàn)了什么?

  2、學生分組試驗,邊實驗邊做記錄

  3、學生匯報試驗結果

  4、分析數(shù)據(jù),做出判斷

  觀察全班數(shù)據(jù),發(fā)現(xiàn)了大多數(shù)情況下圓柱能裝下三個圓錐的沙和水

  5、進一步觀察分析,什么情況下圓柱能裝下三個圓錐的沙和水

  6、教師強調:只要是等底等高的就存在上面的現(xiàn)象。

  7、師演示(實驗)等底等高的圓柱和圓錐

  板書:V圓柱=3V圓錐或V圓錐=1/3V圓柱

  8、你們能用字幕表示他們的關系么?

  V圓錐=1/3V圓柱=1/3sh

  9、要求圓錐的體積必須知道什么?

  (二)解決實際問題

  導言:同學們對本節(jié)課的知識學得很好,下面請同學們解決一下實際問題。

  出示例3:

  (1)指名讀題,分析題意

 。2)指兩名同學板演,其他齊做

 。3)匯報,說解題思路

 。4)拓展:如果就給出這堆沙子,沒有任何數(shù)據(jù),說說你解決這個問題的辦法。

 。ㄈ┵|疑

  三鞏固練習

  (一)實戰(zhàn)訓練營:填空

  1、圓錐的底面是一個()形,從圓錐的頂點到底面圓心的距離是圓錐的()。

  2、圓錐的體積等于和它()的圓柱體體積的(),所以圓錐體的體積()

  3、把一個圓柱削成一個最大的圓錐,這個圓錐的體積是原來圓柱體積的(),削去部分體積是圓柱體體積的()。

  4、一個圓錐體體積是5.4立方分米,與它等底等高的圓柱的體積是()。

 。ǘ⿺(shù)學門診部:判斷對錯

  1、兩個圓錐體的底面積相等,他們的體積也相等.()

  2、圓錐的體積是圓柱體積的1/3。()

  3、圓柱的體積一定大于圓錐的體積。()

  4、一個圓錐與一個圓柱等底等體積,那么圓錐的底面積是圓柱的1/3。()

 。ㄈ┣笙铝袌A錐的體積

  1、底面半徑是2cm,高是8cm

  2、底面直徑是2dm,高是5.8dm

  3、底面周長是6.28cm,高是7.6cm

  4、高是16dm,底面直徑是高的5/8。

 。ㄋ模┙鉀Q實際問題

  一個圓錐形小麥堆,底面周長是31.4m,高是4m,如果每立方米小麥重750kg,那么這堆小麥重多少千克?

 。ㄎ澹┚S訓練題

  一個圓錐形的小麥堆,量得其占地面積是12平方米,高是1.8米,把這堆小麥裝入一個糧倉里,正好站這個糧倉容積的2/15,這個糧倉得的容積是多少立方米?

  四總結這節(jié)課你有哪些收獲?

  五作業(yè)練習四3478題

  板書設計圓錐體的體積

  V圓柱=3V圓錐或V圓錐=1/3V圓柱

 。謭A錐=1/3V圓柱=1/3sh

圓錐的體積教案8

  設計說明

  《數(shù)學課程標準》指出:“學生學習應當是一個生動活潑的、主動且富有個性的過程。除接受學習外,動手實踐、自主探索與合作交流同樣是學習數(shù)學的重要方式。”根據(jù)六年級學生基本都有較強的實驗操作能力和空間想象能力這一特點,在教學圓錐體積計算公式的推導時,一改以前教師演示或在教師指令下做試驗的方式,采取給學生提供材料和機會,引導學生自主探究的學習方式進行教學。具體表現(xiàn)在以下幾個方面:

  1.注意激發(fā)學生的求知欲。

  上課伊始,通過精心設計的問題引發(fā)學生深入思考,激發(fā)學生的學習興趣。在推導公式的過程中,通過引導學生探討試驗方法,使學生的學習興趣保持高漲。在解決問題時,通過“扶”而不是“包辦代替”,使學生在自主分析問題、解決問題中,真實感受到成功的喜悅。

  2.注意以學生為學習活動的主體。

  教學中,為學生提供動腦、動手的空間,使學生充分參與獲取知識的全過程,在分組觀察、實驗操作、測量等基礎上,自主推導出圓錐的體積計算公式。

  3.在學習過程中教給學生科學的探究方法。

  “提出問題——直覺猜想——試驗探究——合作交流——試驗驗證——得出結論——實踐運用”是探究學習的一個基本方法,教學中,為學生搭建探究學習的平臺,促使學生在這樣的過程中掌握知識,獲得廣泛的數(shù)學活動經(jīng)驗和思想方法,發(fā)展學生的反思意識和自我評價意識。同時,課堂中,啟發(fā)學生提問、猜想、動手實踐,培養(yǎng)學生解決問題的能力。

  課前準備

  教師準備 PPT課件 鉛錘

  學生準備 等底、等高的圓柱形容器和圓錐形容器 沙子或水

  教學過程

  ⊙問題導入

  1.提問激趣。

  師:怎樣計算這個鉛錘的體積?(出示鉛錘)

  預設

  生:可以用“排水法”。把鉛錘放入盛水的量杯中(水未溢出),根據(jù)水面的先后變化求出鉛錘的體積。

  師:怎樣求出沙堆的體積?(課件出示例3沙堆圖)

  預設

  生1:用“排水法”好像不行。

  生2:把圓錐形沙堆改變形狀,堆成正方體,測出它的棱長后計算它的體積。

  生3:把圓錐形沙堆改變形狀,堆成長方體,測出它的長、寬、高后計算它的體積。

  生4:把圓錐形沙堆改變形狀,堆成圓柱,測出它的底面周長和高,求出它的底面積后計算它的.體積。

  2.導入新知。

  師:大家都想到了用“轉化”的方法求這堆沙子的體積,但如果我們在計算沙堆體積之前,必須把沙子重新堆放成以前學過的幾何形體,這樣做又麻煩又不容易成功,看來我們還需要尋求一種更普遍、更科學、更便利的求圓錐的體積的方法。(板書課題:圓錐的體積)

  設計意圖:通過提出問題,引發(fā)學生的認知沖突,激發(fā)學生的求知欲,培養(yǎng)學生自主探究的意識,感受學習數(shù)學的必要性。

  ⊙探究新知

  1.猜一猜:圓錐的體積可能與哪種立體圖形的體積有關?

  (學生大膽猜想,可能與圓柱的體積有關)

  2.探究圓錐的體積要借助一個什么樣的圓柱來研究這一問題呢?

  學生經(jīng)過討論、交流并說出觀點:應該選擇一個與這個圓錐等底、等高的圓柱更為合適。

  3.課件出示等底、等高的圓柱和圓錐。

  引導學生想一想它們的體積之間會有什么樣的關系。

  4.方法指導。

  議一議:怎樣借助等底、等高的圓柱和圓錐來探究圓柱和圓錐的體積之間的關系呢?

  (各組同學準備好等底、等高的圓柱、圓錐形容器)

  預設

  生1:把圓柱形容器裝滿水,再倒入圓錐形容器中,看可以正好裝滿幾個圓錐形容器。

  生2:把圓錐形容器裝滿沙子,再倒入圓柱形容器中,看正好幾次可以倒?jié)M。

  生3:選用一組等底、等高的圓柱模型和圓錐模型,先用“排水法”分別求出圓柱和圓錐的體積,再算出圓柱體積是圓錐體積的幾倍,并發(fā)現(xiàn)兩者之間的關系。

  5.操作交流。

  (1)分組試驗。

  請同學們分組試驗。(學生試驗,教師巡視指導)

  (2)交流、匯報。

  師:誰能匯報一下自己小組的試驗結果?

  預設

  生:在圓柱和圓錐的底面積相等、高相等的情況下,將圓錐形容器裝滿沙子向圓柱形容器里倒,倒了3次,正好倒?jié)M。

  師:通過試驗,你發(fā)現(xiàn)等底、等高的圓柱和圓錐的體積之間有什么關系?

  預設

  生1:圓錐的體積是與它等底、等高的圓柱的體積的。

  生2:圓柱的體積是與它等底、等高的圓錐的體積的3倍。

  6.推導公式。

  師:結合自己的試驗結果,說一說計算圓錐的體積時需要知道什么條件。

  預設

  生1:需要知道與圓錐等底、等高的圓柱的體積是多少。

  生2:知道圓錐的底面積和高也可以求出圓錐的體積。

  師:你認為圓錐的體積計算公式是什么?

圓錐的體積教案9

  【教材分析】

  本節(jié)課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發(fā)展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學習幾何知識奠定良好的基礎。本節(jié)內容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉化思想的滲透,直觀引導學生經(jīng)歷“猜測、類比、觀察、實驗、探究、推理、總結”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學生建立空間觀念,還能培養(yǎng)學生抽象的邏輯思維能力,激發(fā)學生的想象力.

  【設計理念】

  數(shù)學課程標準中指出:應放手讓學生經(jīng)歷探索的過程,在觀察、操作、推理、歸納、總結過程中掌握知識、發(fā)展空間觀念,從而提高學生自主解決問題的能力。

  【教學目標】

  1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。

  2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。

  3、情感、態(tài)度與價值觀:培養(yǎng)學生勇于探索的求知精神,感受到數(shù)學來源于生活,能積極參與數(shù)學活動,自覺養(yǎng)成與人合作交流與獨立思考的良好習慣。

  【教學重點】

  圓錐體積公式的理解,并能運用公式求圓錐的體積。

  【教學難點】

  圓錐體積公式的推導

  【學情分析】

  學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發(fā)現(xiàn)問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對于新的知識教學,他們一定能表現(xiàn)出極大的熱情。

  【教法學法】

  試驗探究法小組合作學習法

  【教具學具準備】

  多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)

  【教學課時】

  2課時

  【教學流程】

  第一課時

  一、回顧舊知識

  1、你能計算哪些規(guī)則物體的體積?

  2、你能說出圓錐各部分的名稱嗎?

  【設計意圖】通過對舊知識的回顧,進一步為學習新知識作好鋪墊。

  二、創(chuàng)設情景激發(fā)激情

  展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?

  【設計意圖】以生活中的數(shù)學的形式進行設置情景,引疑激趣遷移,激發(fā)學生好奇心和求知欲。(揭示課題:圓錐的體積)

  三、試驗探究合作學習(探討圓柱與圓錐體積之間的關系)

  探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?

  1、猜想:猜想它們的底、高之間各有什么關系?

  2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結果;

  3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)

  4、教師介紹數(shù)學專用名詞:等底等高

  【設計意圖】通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。

  探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?

  1、大膽猜想:等底等高圓柱與圓錐體積之間的關系

  2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數(shù)據(jù)(教師巡視指導每組的試驗)

  3、小組匯報試驗結論(提醒學生匯報出試驗步驟)

  教學預設:

  (1)圓椎的.體積是圓柱體積的3倍;

  (2)圓錐的體積是圓柱體積的三分之一;

  (3)當?shù)鹊椎雀邥r,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。

  4、通過學生匯報的試驗結論,分析歸納總結試驗結論。

  5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)

  【設計意圖】通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調動學生主動探索的意識,激發(fā)了學生的求知欲,培養(yǎng)了學生的動手能力,突破了本課的難點,突出了教學的重點。

  探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。

  1、觀察老師的試驗,你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關系?

  2、觀察老師的試驗,你發(fā)現(xiàn)了不等底等高的圓柱與圓錐的體積之間還有三分之一的關系嗎?

  3、學生通過觀看試驗匯報結論。

  4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。

  5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。

  【設計意圖】通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養(yǎng)了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。

  四、實踐運用提升技能

  1、判斷題:【題目內容見多媒體展示】獨立思考---抽生匯報---說明理由---師生評議

  2、口答題:【題目內容見多媒體展示】獨立思考---抽生匯報---學生評議

  3、拓展運用:【課本例題3】學生分析題意---小組合作解答---學生解答展示---師生評議

  【設計意圖】通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機會,以達到培養(yǎng)能力、發(fā)展個性的目的。

  五、談談收獲:

  這節(jié)課你學到了什么呢?

  六、課堂作業(yè):

  1、做在書上作業(yè):練習四第4、7題

  2、坐在作業(yè)本上作業(yè):練習四第3題

  【課后反思】

  【板書設計】

圓錐的體積教案10

  教學目標

  1、知識與技能目標:使學生理解和掌握圓錐體積的計算公式,會運用公式計算圓錐的體積并解決簡單的實際問題。

  2、過程與方法:在推導公式過程中,通過小組合作、動手實驗的方法,培養(yǎng)學生分析、推理的能力及抽象概括能力。

  3、態(tài)度、情感、價值觀:在探究公式的過程中,向學生滲透“事物之間是相互聯(lián)系”的,并通過活動,使學生形成良好的合作探究意識。

  教學重難點

  教學重點:掌握圓錐體積的計算公式。

  教學難點:圓錐體積公式的推導過程。

  教學過程

  一、復習舊知,情景導入

  1、怎樣計算圓柱的體積?

  2、一個圓柱的底面積是60平方分米,高

  是15分米,它的體積是多少立方分米?

  3、說一說圓錐有哪些特征?

 。1)頂部:

 。2)底面:

  (3)側面:

 。4)高:

  4、我們學習了圓柱的體積,還認識了圓錐體。

  同學們看今年又是一個豐收年,農民伯伯可高興了,你能幫他們計算收了多少糧食嗎?也就是求圓錐的體積。圓錐的體積怎樣計算呢?它又是怎樣推導出來了呢?這節(jié)課我們就來研究這個問題。(板書課題:圓錐的體積)

  二、新課

  1、引導學生借助圓柱,探討圓錐的體積公式。

 、佟⒉拢簣A錐的體積怎樣計算呢?大膽猜一下。

  ②、圓錐的體積公式是怎樣推導的呢?你有什么想法?小組內討論。

  2、下面我們就用實驗的方法來推導圓椎的體積公式。

  老師提供了實驗用具,(每組有1個圓柱和一個圓錐實驗杯,一瓶礦泉水)

 。1)引導學生觀察用來實驗的圓錐、圓柱的特點:圓柱和圓錐都是等底等高(師板書:等底等高)

 。2)學生實驗:

  你想怎么做實驗?小組內議一議,老師指導倒一下水。請同學們以小組為單位進行實驗,在實驗中,注意填好實驗報告表。(大屏幕出示實驗報告表)

  A:你們小組是怎樣進行實驗的?

  B:通過實驗,你們發(fā)現(xiàn)了所給的圓錐、圓柱在體積上有什么關系?

  C:根據(jù)這個關系怎樣求出圓錐的體積?學生匯報,完成計算公式的推導。

  3、同學們一定有不少的收獲和發(fā)現(xiàn),下面我們來交流一下。

  要求:小組內先交流一下,選三四名同學到前面來匯報。哪個小組同學匯報?哪個小組同學補充?(學生實驗并講解,教師糾正:實驗總是不十分準確,有可能差點。)

  一名學生匯報,師板書。

  生:我們把圓錐裝滿水,倒入這個圓柱體當中,正好倒了3次倒?jié)M,得出圓錐的體積等于這個圓柱的體積的1/3,因為圓柱的體積v=sh,所以圓錐的體積v =1/3sh

 。ń處煱鍟﹫A錐的體積= 1/3 ×底面積×高

  等底等高V=1/3Sh(圓柱的體積怎樣求?圓錐的體積怎樣求?)

  4、反饋。同學們經(jīng)過實驗,發(fā)現(xiàn)了用來實驗的圓錐的體積等于圓柱的體積的1/3,老師也想做實驗:出示一個非常大的圓柱,一個很小的`圓錐,這個圓柱的體積是圓錐體積的3倍嗎?(為什么?)

  我們已經(jīng)推導出了圓錐的體積公式V、S、h表示什么?利用這一關系推導出圓錐的體積:V錐=1/3 Sh)

  圓柱的體積是與它等底等高圓錐體積的3倍。

  圓錐的體積是與它等底等高圓柱體積的1/3 。

  三、鞏固應用

  1、如果小麥堆的底面半徑為2米,高是1.5米。你能計算出小麥堆的體積嗎?

  (一名學生板演并匯報)學生講解。

  答:這個小麥堆的體積是6.28立方厘米。注意:計算公式上有無漏洞、計算上的指導(約分)單位名稱上的指導(立方)。

  2、想一想。議一議。說一說:

 。1)已知圓錐的底面半徑r和高h,如何求體積V?

  (2)已知圓錐的底面直徑d和高h,如何求體積V?

  (3)已知圓錐的底面周長C和高h,如何求體積V?

  4、考考你:

  有一根底面直徑是6厘米,長是15厘米的圓柱形鋼材,要把它削成與它等底等高的圓錐形零件。要削去鋼材多少立方厘米?

  四、課堂小結

  這節(jié)課你有什么收獲?

  板書:圓錐的體積

  圓錐的體積=1/3 ×底面積×高

圓錐的體積教案11

  教學內容:

  冀教版小學數(shù)學六年級下冊第40~42頁。

  教學目標:

  1、知識與技能:知道圓錐的各部分名稱,探索并掌握圓錐的體積公式,會用公式計算圓錐的體積。

  2、過程與方法:通過觀察、討論、實驗等活動,經(jīng)歷認識圓錐和探索圓錐體積計算公式的過程

  3、情感態(tài)度與價值觀:積極參加數(shù)學活動,了解圓錐和圓柱之間的聯(lián)系獲得探索數(shù)學公式的活動經(jīng)驗。

  教學重難點:

  教學重點:了解圓錐的特點,探索并理解圓錐體積的計算公式會用公式計算圓錐的體積。

  教學難點:理解圓錐的高和圓錐體積公式中“Sh”表示的實際意義。

  教具學具:

  1、等底等高的圓柱和圓錐型容器,一些沙子。

  2、多媒體。

  教學流程:

  一、炫我兩分鐘

  主持學生指名叫學生回答下列問題:

  1.圓柱有幾個面?各有什么特點?

  2.怎樣計算圓柱的體積?

  學生回答問題。

  【設計意圖:通過學生主持炫我兩分鐘,使學生復習以前學過的相關知識,在輕松愉快的氛圍中自然引入本節(jié)所學知識。】

  二、創(chuàng)設情境

  1、教師先出示一個圓柱形容器,提問:如果想知道這個容器的容積,怎么辦?

  2、出示問題情境:

  最近老師家準備裝修,準備了一堆沙子,可是老師遇到了一個難題,大家和我一起解決好嗎?(出示沙堆圖片),這堆沙子的底面半徑是2米,高是1.5米,工人告訴我要用6立方米沙子,我不知道我準備的這些沙子夠不夠?怎樣計算這堆沙子的體積呢?今天我們就一起來研究一下圓錐體積的計算方法。(板書課題)

  【設計意圖:在談話、創(chuàng)設問題情境的過程中,引起學生的認知沖突,從而產(chǎn)生求知欲望!

  三、探究新知

  嘗試小研究一(課前):了解圓錐的特點

  1.觀察圓錐形的物體或圖片,它們有哪些特點?

  我的發(fā)現(xiàn):

  2.圓錐由1個( )面和1個( )面2個面組成,圓錐的底面是一個( ) ,圓錐的側面是一個( ) 。

  3.從圓錐頂點到底面圓心的距離是圓錐的( ),用字母( )表示。

  4.怎樣計算圓錐的體積?

  我的猜想:( )

  嘗試小研究二(課上):推導圓錐體積的計算公式

  1、引導學生借助圓柱,探討圓錐的體積公式。

 、佟⒉拢簣A錐的體積怎樣計算呢?大膽猜一下。真的是這樣嗎?

 、凇⑹窃鯓油茖У哪?你有什么想法?

  下面我們就用實驗的方法來推導圓椎的體積公式。

  老師提供了實驗用具,拿出來看看:(有圓柱,有圓椎,有沙子,有水)都有嗎?

  2、用實驗的方法,推導圓錐的體積公式。

 、、引導學生觀察用來實驗的圓錐、圓柱的特點。

  其實老師已經(jīng)準備好了材料,在你們的小組長手中,看一看,比一比,有什么特點嗎?(學生發(fā)現(xiàn)等底等高)(師板書等底等高)

  ②、學生實驗:

  你想怎么實驗?(小組可以議一議)(老師指導:倒一下)

  請大家以小組為單位進行實驗,在實驗中,注意作好記錄,思考三個問題:(大屏幕出示這三個問題)(學生讀一讀思考題)

  A:你們小組是怎樣進行實驗的?

  B:通過實驗,你們發(fā)現(xiàn)了所給的圓錐、圓柱在體積上有什么關系?

  C:根據(jù)這個關系怎樣求出圓錐的體積?

  (教師指導:為了讓實驗更準確些,可以用尺子將沙子刮平再倒入)

 、邸W生交流匯報,完成計算公式的推導:

  小組匯報,師板書。

  圓錐的體積等于和它等底等高的圓柱體積的.三分之一。

  V=1/3Sh

  【設計意圖:通過小組合作,觀察、討論、實驗等活動,經(jīng)歷認識圓錐和探索圓錐體積計算公式的過程,知道圓錐的各部分名稱,探索并掌握圓錐的體積公式,會用公式計算圓錐的體積!

  四、解決問題,鞏固練習

 。ㄒ唬┻\用這個公式解決老師提出的問題,幫助老師解決問題。

  1、 學生試做。

  2、對子同學交流。

  3、小組交流。

  4、展示匯報。

 。ǘ┡袛啵 用手勢來回答

  1、圓柱的體積是圓錐體積的3倍。( )

  2、一個圓柱,底面積是12平方分米,高是5分米,它的體積是20立方分米( )

  3、把一個圓柱木塊削成一個最大的圓錐,削去的體積是圓柱體積的三分之二。( )

 。ㄈ┩瓿山滩牡42頁“試一試”。

  【設計意圖:通過練習,加深對本節(jié)課知識的了解,使學生更好的掌握本節(jié)課所學知識,并提高學生應用所學知識解決實際問題的能力。】

  五、盤點收獲

  通過這節(jié)課的學習,你有什么收獲?你還想了解哪些知識

  【設計意圖:引導學生進行小結,培養(yǎng)學生的探究欲望,有利于知識的積累和自主學習能力的提高!

  六、拓展延伸

  教材第42頁“練一練”第4題。

  【設計意圖: 把課上的知識延伸到課外,使學生進一步感受數(shù)學于生活并應用于生活!

  板書設計: 圓錐和圓錐的體積

  圓錐的體積等于和它等底等高的圓柱體積的三分之一。

  圓錐的體積=底面積×高×1/3

  V=1/3Sh

  5 O

圓錐的體積教案12

  教學內容:教科書第52頁練習十二的第69題。

  教學目的:通過練習,使學生進一步熟悉圓錐的體積計算。

  教學過程:

  一、復習

  1.圓錐的體積公式是什么?

  2.填空。

 。1)一個圓錐的體積是與它等底等高的圓柱體積的

  (2)圓柱的體積相當于和它等底等高的圓錐體積的( )倍。

  (3)把一個圓柱削成一個最大的圓錐,削去部分的體積相當于圓柱的 ,相當 于圓錐的( )倍。

  二、課堂練習

  1.做練習十二的第6題。

  教師出示一個圓錐形物體,讓學生想一想怎樣測量才能計算出它的體積:

  讓學生分組討論一下,然后各自讓一名學生說說討論的結果,最后歸納出幾種行之有效的測量方法。例如,要求一個圓錐物體的體積,可以先用軟尺量出底面圓的周長,再求出底面的半徑,進而求出底面積,然后用書上介紹的方法,用直尺和三角板

  測量出圓錐的高,這樣就可以求出圓錐的體積。

  2.做練習十二的第7題。

  讀題后,教師可以先后提問:

  這道題已知什么?求什么?

  要求這堆沙的重量,應該先求什么?怎樣求?

  指名學生回答后,讓學生做在練習本上,做完后集體訂正。

  3.做練習十二的第8題。

  讀題后,教師可提出以下問題:

  這道題要求的是什么?

  要求這段鋼材重多少千克,應該先求什么?怎樣求?

  能直接利用題目中的數(shù)值進行計算嗎?為什么?

  題目中的'單位不統(tǒng)一,應該怎樣統(tǒng)一?

  分別指名學生回答后,要使學生明白這里要先將2米改寫成200厘米,再利用圓柱的體積計算公式算出鋼材的體積是多少立方厘米,然后再求出它的重量。最后計算出的結果還應把克改寫成千克。

  4.做練習十二的第9題。

  讀題后,教師提問:這道題要求糧倉裝小麥多少噸,應該先求什么?

  要使學生明白,應該先求2.5米高的小麥的體積,而不是求糧倉的體積。

  讓學生獨立做在練習本上,做完后集體訂正。

  三、選做題

  讓學有余力的學生做練習十二的第10*、11*、12*題。

  1.練習十二的第10*題。

  教師:這道題要求圓錐的體積.但是題目中沒有告訴底面積,而只是已知底面周長和高。請大家想一想,應該怎樣求出底面積?

  引導學生利用C=2r可以得到r= 。再利用SR,就可以求得S=( )。再利用圓錐的體積公式就可以求出其體積。

  2.練習十二的第11*題。

  這是一道有關圓柱、圓錐體積的比例應用題。

  可以用列方程來解答。利用題目中圓錐和圓柱的體積之比,可以建立一個比例式。

  設圓柱的高為x厘米。

  =

  X=9。6

  (注意:由于圓錐和圓柱的底面積S都相等,所以計算中可以先把S約去。)

  3.練習十二的第12題。

  這道題是拆分組合圖形,引導學生仔細分析圖形,不難看出它是由等底的圓柱和圓錐組合而成的:從圖中可以看出,圓柱和圓錐的底面直徑都是16厘米,而圓柱的高是4厘米,圓錐的高是17厘米。然后再根據(jù)圓的面積公式及圓柱和圓錐的體積公式,就可以求出這個組合圖形的體積了。

圓錐的體積教案13

  一、學習目標

  (一)學習內容

  《義務教育教科書數(shù)學》(人教版)六年級下冊第33—34頁的例2和例3。例2是以探索圓錐的體積與和它等底等高的圓柱體積之間的關系為例,讓學生在探究過程中獲得數(shù)學活動經(jīng)驗。例3則是在例2的基礎上運用圓錐的體積公式解決實際問題,豐富解決問題的策略,感受數(shù)學與生活密不可分的聯(lián)系。

  (二)核心能力

  在探索圓錐的體積與和它等底等高的圓柱體積之間的關系的過程中,滲透轉化思想,發(fā)展推理能力。

  (三)學習目標

  1.借助已有的知識經(jīng)驗,通過觀察、猜測、實驗,探求出圓錐體積的計算公式,并能運用公式正確地解決簡單的實際問題。

  2.在圓錐體積計算公式的推導過程中,進一步理解圓錐與圓柱的聯(lián)系,發(fā)展推理能力。

 。ㄋ模⿲W習重點

  圓錐體積公式的理解,并能運用公式求圓錐的體積。

 。ㄎ澹⿲W習難點

  圓錐體積公式的推導

 。┡涮踪Y源

  實施資源:《圓錐的體積》名師課件、若干同樣的圓柱形容器、若干與圓柱等底等高和不等底等高的圓錐形容器,沙子和水

  二、教學設計

  (一)課前設計

  1.復習任務

 。1)我們學過哪些立體圖形?它們的體積計算公式分別是什么?請你整理出來。

 。2)這些立體圖形的體積計算公式是怎么推導的?運用了什么方法?請整理出來。

  設計意圖:通過復習物體的體積公式以及圓錐體積的推導,深化轉化思想在生活中的應用,也為圓錐體積的推導埋下伏筆。

 。ǘ┱n堂設計

  1.情境導入

 。ǔ鍪旧扯眩

  師:你們有辦法知道這個沙堆的體積嗎?

  學生自由發(fā)言,提出各種辦法。

  預設:把它放進圓柱形的容器里,測量出圓柱的底面積和高就可以知道等等

  師:能不能像其它立體圖形一樣,探究出一個公式來求圓錐的體積呢?這節(jié)課我們來研究。板書課題

  設計意圖:利用情境引入,激發(fā)學生求知的欲望,引出求圓錐體積公式的必要性。

  2.問題探究

 。1)觀察猜想

  師:你們覺得,圓錐的體積和我們認識的哪種立體圖形的體積可能有關?為什么?

  學生自由發(fā)言。

 。▓A柱,圓柱的底面是圓,圓錐的底面也是圓……)

  師:認真觀察,它們之間的體積會有什么關系?(出示圓柱、圓錐的教具)

  學生猜想。

 。2)操作驗證

  師:圓錐的體積究竟和圓柱的體積有什么關系?請同學們親自驗證。

  實驗用具:教師準備等底等高和不等底等高的各種圓柱、圓錐模具,一些水。

  實驗要求:各組根據(jù)需要先上臺選用實驗用具,然后小組成員分工合作,做好實驗數(shù)據(jù)的收集和整理。

  1號圓錐2號圓錐3號圓錐

  次數(shù)

  與圓柱是否等底等高

  學生選過實驗用具后進行試驗,教師巡視,發(fā)現(xiàn)問題及時指導,收集有用信息。

 。3)交流匯報

 、賲R報實驗結果

  各組匯報實驗結果。

 、诜治鰯(shù)據(jù)

  師:觀察全班實驗的數(shù)據(jù),你能發(fā)現(xiàn)什么?

 。ù蟛糠謱嶒灥慕Y果是能裝下三個圓錐的水,也有兩次多或四次等)

  師:什么情況下,圓柱剛好能裝下三個圓錐的水?

  各組互相觀察各自的`圓柱和圓錐,發(fā)現(xiàn)只有在等底等高的情況下,圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是和它等底等高的圓柱的體積的三分之一。

  師:是不是所有符合等底等高條件的圓柱、圓錐,它們的體積之間都具有這種關系呢?

  老師用標準教具裝沙土再演示一次,加以驗證。

 、蹥w納小結

  師:誰能來總結一下,通過實驗我們得到的結果是什么?

 。4)公式推導

  師:你能把上面的試驗結果用式子表示嗎?(學生嘗試)

  老師結合學生的回答板書:

  圓錐的體積公式及字母公式:

  圓錐的體積=×圓柱的體積

 。健恋酌娣e×高

  S=sh

  師:在探究圓錐體積公式的過程中,你認為哪個條件最重要?(等底等高)

  進一步強調等底等高的圓錐和圓柱才存在這種關系。

  設計意圖:通過觀察、猜測,讓學生感知圓錐的體積與圓柱體積之間存在著一定的關系,滲透轉化的思想。再通過對實驗數(shù)據(jù)的分析,進一步感知圓錐的體積是和它等底等高的圓柱的體積的三分之一,在這一過程中,發(fā)展學生的推理能力。

  考查目標1、2

 。5)實踐應用

  師:還記得這堆沙子嗎?如果給你了它的高和底面的直徑,你能算出這堆沙的體積大約是多少?如果每立方米沙子重1.5t,這堆沙子大約重多少噸?(得數(shù)保留兩位小數(shù)。)

  師:要求沙堆的體積需要已知哪些條件?

 。ㄓ捎谶@堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)

  學生試做后交流匯報。

  已知圓錐的底面直徑和高,可以直接利用公式

  V=π()h來求圓錐的體積。

  師:在計算過程中我們要注意什么?為什么?

  注意要乘以,因為通過實驗,知道圓錐的體積等于與它等底等高的圓柱體積的。

  3.鞏固練習

  (1)填空。

  ①圓柱的體積是12m,與它等底等高的圓錐的體積是()m。

 、趫A錐的體積是2.5m,與它等底等高的圓柱的體積是()m。

 、蹐A錐的底面積是3.1m2,高是9m,體積是()m。

 。2)判斷,并說明理由。

 、賵A錐的體積等于圓柱體積的。()

 、趫A錐的體積等于和它等底等高的圓柱體積的3倍。()

 。3)課本第34頁的做一做。

 、僖粋圓錐形的零件,底面積是19cm2,高是12cm,這個零件的體積是多少?

 、谝粋用鋼鑄造成的圓錐形鉛錘,底面直徑是4cm,高是5cm。每立方厘米鋼大約重7.8g。這個鉛錘重多少克?(得數(shù)保留整數(shù))

  4.課堂總結

  師:這節(jié)課你收獲了什么?和大家分享一下吧!

  圓柱的體積是與它等底等高圓錐體積的3倍;圓錐的體積是與它等底等高圓柱體積的三分之一;V圓錐=V圓柱=Sh。

  (三)課時作業(yè)

  1.王師傅做一件冰雕作品,要將一塊棱長30厘米的正方體冰塊雕成一個最大的圓錐,雕成的圓錐體積是多少立方厘米?

  答案:30÷2=15(厘米)

  ×3.14×152×30

  =235.5×30

 。7065(立方厘米)

  答:雕成的圓錐的體積是7065立方厘米。

  解析:這是一道考察學生空間思維能力的題,要在正方體里面雕一個最大的圓錐,必須滿足圓錐的底面直徑等于正方體的棱長,圓錐的高也要等于正方體的棱長,在實際中感受生活和數(shù)學的緊密聯(lián)系,同時為下面在長方體里放一個最大的圓錐做了鋪墊?疾槟繕1、2

  2.看看我們的教室是什么體?(長方體)

  要在我們的教室里放一個盡可能大的圓錐體,想一想,可以怎樣放?怎樣放體積最大?(測量教室長12m,寬6m,高4m.先計算,再比較怎樣放體積最大的圓錐體。)

  解析:這是一道開放題,有一定的難度,在考察學生對圓錐體積理解的基礎上,又綜合了長方體的知識,對學生的空間想象能力要求比較高。

  ①以長寬所在的面為底面做最大的圓錐,此時圓錐的高為4m,底面圓的直徑為6m.

 、谝詫捀咚诘拿鏋榈酌孀鲎畲蟮膱A錐,此時圓錐的高為12m,底面圓的直徑為4m.

 、垡蚤L高所在的面為底面做最大的圓錐,此時圓錐的高為6m,底面圓的直徑為4m.

  以上三種情況計算并加以比較,得出結論?疾槟繕1、2

圓錐的體積教案14

  一.教材依據(jù)

  本節(jié)課所講的《圓錐的體積》是九年義務教育人教實驗版,第十二冊第二章第二節(jié)的內容。

  二.設計思想

  為了落實素質教育,積極推進新改革,充分發(fā)揮學生的主體作用,甘做學生的朋友,引導其積極主動地進行探究性學習。通過“小組活動”、“合作探究”全面調動每一位學生的學習積極性和參與性。通過學生的自主學習、互助學習,自主探究所學的內容,完全改變過去被動的“填鴨式”的教學模式,切實提高課堂效率。

  本節(jié)教材我想通過向等底等高的圓柱和圓錐中倒水或沙的實驗,得到圓錐體積的計算公式V=1/3sh.即就是等底等高的圓錐體積是圓柱體積的三分之一。例2是已知圓錐形沙堆的底面直徑和高,求沙子的體積。這是一個簡單的實際問題,通過這個例子教學使學生初步學會解決一些與計算圓錐形物體的體積有關的'實際問題。前面學生對圓錐、圓柱立體圖形的特征已進行了學習,對其特征也有了較深刻的認識,可以熟練地計算圓柱的體積、表面積、側面積。這是學習本節(jié)課的基礎。

  三.教學目標

  知 識 技能:理解并掌握圓錐體積的計算方法,能運用公式解決

  簡單的實際問題。

  過程與方法:在實踐操作中掌握圓錐體積公式的推導。

  情 感 態(tài)度:培養(yǎng)學生樂于學習,熱愛生活,勇于探索的精神。

  四.教學重點

  進一步理解圓錐的體積公式,能運用公式進行計算,能解決

  簡單的實際問題。

  五.教學難點:圓錐體積公式的推導。

  六、教法選擇

  利用多媒體、觀察法、實驗法、師生互動啟發(fā)式教學

  七、學法指導

  觀察實驗 —合作探究—達標反饋— 歸納總結

  八.教學準備

  多媒體課件、同樣的圓柱形容器若干、與圓柱等底等高的圓錐形容器若干、水和沙土。

  九.教學過程

  【復習舊知】

  1. 課件展示圓柱和圓錐的立體圖形,并請學生說出圖形各部分的名稱。

  2. 圓柱的體積公式是什么?

  【創(chuàng)設情境,引發(fā)猜想】

  1.多媒體課件呈現(xiàn)出動畫情景故事(配音樂):

  盛夏的一天,森林里悶熱極了,小動物們熱得喘不過氣來,都想吃點解暑的東西。漂亮的小白兔去冷飲店買了一塊圓柱形的冰麒麟,聰明的狐貍拿著一塊圓錐形的冰麒麟想和它交換…… (多媒體課件展示兩塊冰麒麟等底等高)

  2.引導學生圍繞問題展開討論。

  問題一:小白兔上當了嗎?

  問題二:狐貍和小白兔怎樣交換才算公平?

  3. 導入新課,板書課題:同學們,要解決這些問題我們就來學習《圓錐的體積》這一節(jié)課,然后幫幫小白兔好嗎?

  【自主探索,動手實驗】

  出示思考題:通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐的體積之間有什么關系?你們小組是怎樣實驗的?

  1. 小組實驗。按照實驗程序要求和注意事項(多媒體課件展示)

  每四人為一小組,各小組長帶領三個成員動手操作實驗,教師在教室巡回指導。

  2. 全班交流。

  組織收集信息 —— 引導整理信息 —— 參與處理信息

  3. 引導反思。實驗過程讓學生積極發(fā)散思維,各抒己見。

  4. 公式推導。

  全班同學集體觀看多媒體課件的實驗過程,并結合自己的實驗活動試著推導圓錐的體積計算公式。

  圓柱的體積等于和它等底等高的圓錐體積的3倍;或者圓錐的體積等于和它等底等高的圓柱體積1/3。

  用字母表示為: V=1/3sh

  5.思考:如果要計算圓錐的體積,必須知道那些條件?

  6.問題解決。

  故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(課件出示:等底等高)

  【運用公式,解決問題】

  例2:建筑工地上有許多沙子,堆起來近似一個圓錐,這堆沙子大約

  有多少立方米?(結果保留兩位小數(shù))

  具體解題過程讓同學們自己大顯身手,個別學生可以上講臺板演,然后教師作最后講評。

  【練習鞏固】課件出示,師生共同完成。

  一.判斷。

  1、圓柱體的體積一定比圓錐體的體積大。 ( )

  2、圓錐的體積等于和它等底等高的圓柱體的。 ( ) 3、正方體、長方體、圓錐體的體積都等于底面積×高。( ) 。

  4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。( )

  二.填表。

  已 知 條 件 體積

  圓錐底面半徑2厘米,高9厘米

  圓錐底面直徑6厘米,高3厘米

  圓錐底面周長6.28分米,高6分米

  【拓展延伸】:

  有一根底面直徑是6厘米,長是15厘米的圓柱形鋼材,要把它削成與它等底等高的圓錐形零件。要削去鋼材多少立方厘米?

  【質疑問難,總結升華】

  通過這節(jié)課的學習,你們對圓錐的體積有哪些新的認識?請談談自己的感想和收獲。

  【作業(yè)布置】

  課本25頁第3、5、8題

圓錐的體積教案15

  目 標:

  1、理解和掌握圓錐體體積的計算方法,并能運用公式求圓錐體的體積,并能解決簡單的實際問題。

  2、通過動手實踐,自主探求圓錐體積的計算方法,培養(yǎng)學生初步的邏輯推理能力和創(chuàng)新意識,發(fā)展空間觀念。

  3、激發(fā)學生熱愛生活,勇于探索、樂于與人合作的情趣。

  重 點:掌握圓錐體積的方法

  難 點:公式的推導

  準 備:沙,圓柱教具若干個,圓錐一個,其中要有一組等底等高的圓柱和圓錐

  教 程:

  一、準備

  同學們,我們以前研究過一些立體圖形,如長方體,正方體,圓柱體,它們的體積各是怎樣計算的呢?

  二、誘發(fā)

  課件演示稻谷豐收的景象。師述:稻谷豐收了,農民伯伯忙著收割稻谷,他們把收好的'稻谷堆成一個這樣的圖形(圓錐形谷堆),同學們你們認識嗎?你能算出這堆稻谷的體積嗎?它和圓柱的體積有什么聯(lián)系呢?這就是我們這節(jié)課要學習的內容。

  三、探究釋疑

  1、初次猜想

 、鸥鶕(jù)我們所學過的內容,請同學們猜一猜,圓錐的體積應該怎樣計算?

  ⑵圓錐的體積是否能用“底面積×高”來計算呢

 、菍W生通過觀察,發(fā)現(xiàn)“底面積×高”不是圓錐的體積,而是與它等底等高的圓柱的體積。

  2、再次猜想

 、磐ㄟ^模型演示,

  ⑵根據(jù)學生回答,從而得到如下結論:

  圓錐的體積 = ×圓柱的體積(等底等高)

  3、分組實驗進行驗證

  ⑴讓學生用三個不同的圓柱體和一個圓錐(其中必有一組等底等高的圓柱和圓錐)來進行實驗。

 、品纸M討論,分組匯報

  圓錐的體積 = ×圓柱的體積(等底等高)

  用字母表示:V=1/3Sh

  4、聯(lián)系實際,進行運用

  ⑴出示例1,學生嘗試練習,集體訂正。

  ⑵教學例2、課件出示:

  麥收季節(jié),張小紅把她家收的小麥堆成一個近似圓錐的麥堆,又給出測量的數(shù)據(jù),讓學生看圖編一道求小麥重量的應用題。

  編好后,分組討論計算

  學生自己列式計算,集體訂正

  四、轉化

  1、基礎題

  ⑴下面有四組圖形,你能根據(jù)每組圖形中左圖的體積,求出右圖的體積嗎?為什么?

  24立方米 9立方米 12立方米

  ⑵一個圓錐的底面直徑是4厘米,高5厘米,它的體積是多少?

  2、提高題

  有一塊正方體的木材,它的棱長是9分米,把這塊木料加工成一個最大的圓柱體,被削去的體積是多少?

  3、思考題

  把一個棱長6厘米的正方體鐵塊和底面直徑、高都是6厘米的圓柱形鐵塊,熔鑄成一個直圓錐體,如果這個直圓錐體和圓柱的底面大小一樣,這個直圓錐體的高是多少厘米?(得數(shù)保留整數(shù))

  五、應用

  1、 基礎題:P44-T3、4

  2、 提高題:P45-T10

  3、 思考題:P45-T11、12

【圓錐的體積教案】相關文章:

圓錐的體積教案02-13

[經(jīng)典]圓錐的體積教案11-17

《圓錐的體積》教案08-12

圓錐的體積01-16

圓錐的體積教案15篇02-14

圓錐的體積說課稿07-02

《圓錐的體積》說課稿02-16

《圓錐的體積》教案精華(2篇)09-04

圓錐的體積教學反思10-19